• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of A Multi-channel RGB Laser Diode Driver for Laser Projection Applications

Zha, Rong January 2019 (has links)
In this thesis, a red green and blue (RGB) laser diode driver (LDD) is designed, assembled and tested, which can work as a standalone device or an internal component fully controlled by a laser projector. In particular, the thesis explores a multi-channel RGB LDD for a retrofitted laser projector, targeting projectors for home, business and education. If laser diodes (LDs) with the same color are connected in series, a higher forward voltage is required, making most commercial LDDs unsuitable for this application due to their insufficient compliance voltages. If the connections of all the LDs are in parallel, issues on size and cost arise since many LDs are used in this case. Another problem to use the commercial LDDs for RGB laser projection is that there are no proper communication interfaces to link the LDDs to the laser projector. In order to solve these problems by taking advantage of all the features of iC-HTG, an integrated circuit with automatic current control functionality, both the hardware circuits and the software for an eight-channel LDD are designed. Experimental results show that all the RGB channels can achieve compliance voltage of 23 V within the required working current range, which can drive up to 5 blue, 4 green or 10 red LDs in series in each single channel. It is confirmed experimentally that the designed LDD can fulfill the requirements on driving current (i.e. 1% accuracy and 1% stability). The protection functions of the developed LDD are also explored and verified experimentally. It can detect the open laser connection before the LDD channels are enabled. Fast over-current protection can be achieved within 1.5 µs. Circuit interfaces and protocols of the communications enable the multi-channel RGB LDD to work as a standalone device or an internal component of the laser projector. / Thesis / Master of Applied Science (MASc)
2

Laserový projektor / Laser Projector

Svoboda, Pavel January 2015 (has links)
The aim of this thesis is to create a system, which draws the graphics with the help of a set laser project and eventually is able to synthetize several coloured rays and thus realise a multicolour drawing. The whole system is controlled by a Raspberry PI microcomputer and the data is sent to it from a PC via an Ethernet cable. The transmission of the projector device was identified and possible ways of improving the device were suggested. The results of this thesis allow creation of a multi-coloured vector picture, transferring it into the device and depiction on the project desktop. The whole device can therefore be used for example for the purpose of a presentation.
3

<b>LASER PROJECTOR-ASSISTED COMPOSITE MANUFACTURING</b>

Yuwei He (19064723) 10 July 2024 (has links)
<p dir="ltr">Composite materials have gained popularity and favor in the aviation and aerospace industries. Their distinctive blend of properties transformed the design and material selection of aircraft and spacecraft, providing significant advantages in terms of weight reduction, fuel efficiency, structural integrity, and environmental sustainability. While multiple automated technologies for composite manufacturing, such as the AFP/ATL machine's robotic arms, are currently being used in the industry, manual layup is still the primary choice for complicated geometry and small-scale manufacturing. For manual layup assistance, physical templates and a laser projector can assist the laminator for ply placement. However, physical templates can be costly, complicated to manufacture, and inefficient. On the other hand, the implementation of laser projection can assist the laminator with ply placement seed point identification and eliminate the need for a physical template, making it a more sustainable option. This study is designed to determine whether the laser projector can assist the laminator in ensuring a constant overlap length, which might improve material structural performance and reduce manufacturing time.</p>

Page generated in 0.0636 seconds