• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Buried screen-printed contacts for silicon solar cells

Jamshidi Gohari, Ebrahim January 2012 (has links)
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries. / <p>In collaboration with Institute for Photovoltaics <strong><em>IPV</em></strong>, University of Stuttgart.</p>
2

A non-contact laser ablation cell for mass spectrometry

Asogan, Dhinesh January 2011 (has links)
A common analytical problem in applying LA sampling concerns dealing with large planar samples, e.g. gel plates, Si wafers, tissue sections or geological samples. As the current state of the art stands, there are two solutions to this problem: either sub-sample the substrate or build a custom cell. Both have their inherent drawbacks. With sub-sampling, the main issue is to ensure that a representative is sample taken to correctly determine the analytes of interest. Constructing custom cells can be time consuming, even for research groups that are experienced or skilled, as they have to be validated before data can be published. There are various published designs and ideas that attempt to deal with the issue of large samples, all of which ultimately enclose the sample in a box. The work presented in this thesis shows a viable alternative to enclosed sampling chambers. The non-contact cell is an open cell that uses novel gas dynamics to remove the necessity for an enclosed box and, therefore, enables samples of any arbitrary size to be sampled. The upper size limit of a sample is set by the travel of the XY stages on the laser ablation system, not the dimensions of the ablation cell.
3

Plonasluoksnių saulės elementų apdirbimas ultratrumpais lazerių impulsais / Ultrashort pulsed laser processing of thin-films for solar cells

Gečys, Paulius 01 October 2012 (has links)
Disertacijos darbo tikslas buvo, modeliuojant bei vykdant eksperimentus, suprasti plonų sluoksnių, naudojamų Saulės elementuose, abliacijos procesus ultratrumpais impulsais, siekiant juos pritaikyti integruotų jungčių fotovoltiniuose moduliuose formavimui. Eksperimento rezultatams pagrysti buvo vykdomas lazerio spinduliuotės sklidimo bei pasiskirstymo plonasluoksnėje Saulės elemento struktūroje modeliavimas. Sugerta lazerio energija lokaliai užkaitiną medžiagą. Kadangi lazerinio proceso selektyvumas priklauso nuo medžiagos optinių savybių, todėl yra itin svarbu parinkti tinkamą lazerio spinduliuotės bangos ilgį, norint sukaupti spinduliuotę reikiamame plonasluoksnės struktūros sluoksnyje. Nustatyta, kad fundamentinė pikosekundinio lazerio spinduliuotė (1064 nm) yra optimaliausia P3 tipo rėžio formavimui CIGS Saulės elemente. Pramonės taikymams tai yra itin svarbu, nes tokiu atveju mažėja industrinės lazerinės sistemos sudėtingumas bei kaina. Saulės elementų efektyvumo tyrimai parodė nežymų fotoelektrinio efektyvumo sumažėjimą po lazerinio apdirbimo ultra trumpais impulsais, tačiau nebuvo užfiksuota defektų generacijos lazeriais paveiktose kanalo kraštų zonose. Disertacijoje pasiūlyti ir išbandyti pluošto formavimo ir lygiagretaus sluoksnių raižymo metodai, didinantys proceso našumą ir raižymo kokybę. Pikosekundiniai, didelio impulsų pasikartojimo dažnio lazeriai gali būti panaudoti didelės spartos bei aukštos kokybės Saulės elementų raižymo procesuose. / Present PhD thesis is the experimental and theoretical analysis of thin layer ultrashort pulsed laser ablation processes for photovoltaic devices. Experimental work was supported by modeling and simulation of energy coupling and dissipation inside the layers. The absorbed laser energy was transformed to localized transient heating inside the structure. Selectiveness of the ablation process was defined by optical and mechanical properties of the materials, and selection of the laser wavelength facilitated control of the structuring process. The 1064 nm wavelength was found optimal for the CIGS solar cell scribing in terms of quality and process speed. It is very positive result for industrial applications as the cost and the system complexity are decreased. The solar cell efficiency test revealed minor degradation in photo-electrical efficiency after the laser scribing was applied to the solar cell samples. Lock-in thermography measurements did not revealed any internal shunt formation during laser scribing with picosecond pulse duration. Picosecond lasers with fundamental harmonics and high repetition rates can be used to accomplish efficient and fast scribing process which is able to fit the demands for industrial solar cell scribing applications.
4

Ultrashort pulsed laser processing of thin-films for solar cells / Plonasluoksnių saulės elementų apdirbimas ultratrumpais lazerių impulsais

Gečys, Paulius 01 October 2012 (has links)
Present PhD thesis is the experimental and theoretical analysis of thin layer ultrashort pulsed laser ablation processes for photovoltaic devices. Experimental work was supported by modeling and simulation of energy coupling and dissipation inside the layers. The absorbed laser energy was transformed to localized transient heating inside the structure. Selectiveness of the ablation process was defined by optical and mechanical properties of the materials, and selection of the laser wavelength facilitated control of the structuring process. The 1064 nm wavelength was found optimal for the CIGS solar cell scribing in terms of quality and process speed. It is very positive result for industrial applications as the cost and the system complexity are decreased. The solar cell efficiency test revealed minor degradation in photo-electrical efficiency after the laser scribing was applied to the solar cell samples. Lock-in thermography measurements did not revealed any internal shunt formation during laser scribing with picosecond pulse duration. Picosecond lasers with fundamental harmonics and high repetition rates can be used to accomplish efficient and fast scribing process which is able to fit the demands for industrial solar cell scribing applications. / Disertacijos darbo tikslas buvo, modeliuojant bei vykdant eksperimentus, suprasti plonų sluoksnių, naudojamų Saulės elementuose, abliacijos procesus ultratrumpais impulsais, siekiant juos pritaikyti integruotų jungčių fotovoltiniuose moduliuose formavimui. Eksperimento rezultatams pagrysti buvo vykdomas lazerio spinduliuotės sklidimo bei pasiskirstymo plonasluoksnėje Saulės elemento struktūroje modeliavimas. Sugerta lazerio energija lokaliai užkaitiną medžiagą. Kadangi lazerinio proceso selektyvumas priklauso nuo medžiagos optinių savybių, todėl yra itin svarbu parinkti tinkamą lazerio spinduliuotės bangos ilgį, norint sukaupti spinduliuotę reikiamame plonasluoksnės struktūros sluoksnyje. Nustatyta, kad fundamentinė pikosekundinio lazerio spinduliuotė (1064 nm) yra optimaliausia P3 tipo rėžio formavimui CIGS Saulės elemente. Pramonės taikymams tai yra itin svarbu, nes tokiu atveju mažėja industrinės lazerinės sistemos sudėtingumas bei kaina. Saulės elementų efektyvumo tyrimai parodė nežymų fotoelektrinio efektyvumo sumažėjimą po lazerinio apdirbimo ultra trumpais impulsais, tačiau nebuvo užfiksuota defektų generacijos lazeriais paveiktose kanalo kraštų zonose. Disertacijoje pasiūlyti ir išbandyti pluošto formavimo ir lygiagretaus sluoksnių raižymo metodai, didinantys proceso našumą ir raižymo kokybę. Pikosekundiniai, didelio impulsų pasikartojimo dažnio lazeriai gali būti panaudoti didelės spartos bei aukštos kokybės Saulės elementų raižymo procesuose.

Page generated in 0.0569 seconds