Spelling suggestions: "subject:"basers -- amathematical models."" "subject:"basers -- dmathematical models.""
1 |
A new mathematical model for a propagating Gaussian beam.Landesman, Barbara Tehan. January 1988 (has links)
A new mathematical model for the fundamental mode of a propagating Gaussian beam is presented. The model is two-fold, consisting of a mathematical expression and a corresponding geometrical representation which interprets the expression in the light of geometrical optics. The mathematical description arises from the (0,0) order of a new family of exact, closed-form solutions to the scalar Helmholtz equation. The family consists of nonseparable functions in the oblate spheroidal coordinate system and can easily be transformed to a different set of solutions in the prolate spheroidal coordinate system, where the (0,0) order is a spherical wave. This transformation consists of two substitutions in the coordinate system parameters and represents a more general method of obtaining a Gaussian beam from a spherical wave than assuming a complex point source on axis. Further, each higher-order member of the family of solutions possesses an amplitude consisting of a finite number of higher-order terms with a zero-order term that is Gaussian. The geometrical interpretation employs the skew-line generator of a hyperboloid of one sheet as a ray-like element on a contour of constant amplitude in the Gaussian beam. The geometrical characteristics of the skew line and the consequences of treating it as a ray are explored in depth. The skew line is ultimately used to build a nonorthogonal coordinate system which allows straight-line propagation of a Gaussian beam in three-dimensional space. Highlights of the research into other methods used to model a propagating Gaussian beam--such as complex rays, complex point sources and complex argument functions--are reviewed and compared with this work.
|
Page generated in 0.109 seconds