• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conversão de frequência de radiação

Pinto, Maria Silvia Guedes de Souza 15 July 1977 (has links)
Orientador: Antonio G. J. Balbin Villaverde / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-07-15T14:34:06Z (GMT). No. of bitstreams: 1 Pinto_MariaSilviaGuedesdeSouza_M.pdf: 713670 bytes, checksum: b3b392e284b6b031a8a11c5551ec0df4 (MD5) Previous issue date: 1977 / Resumo: O trabalho trata da montagem do "Q-Switch" de um laser pulsante de rubi, provêndo-o de um controle para que ele opere no modo puro f.undamental TEM00. São estudados os perfis espacial e temporal do feixe do laser no unimodo, sendo feitas as medidas de potência pico e ener- gia. A seguir e realizado uma análise de geração do segundo harmônico, verificada em três cristais: RDP ( fosfato dihidrogenado de rubídio ) , LiI03 ( iodato de litio ), RDA ( arsenato dihidrogenado de rubídio ), por ângulo e temperatura de "phase-matching" respectivamente. As conversões de frequência apresentam eficiência da ordem de 30%, sendo todas obtidas com o laser operando no TEM00 / Abstract: Not informed. / Mestrado / Física / Mestre em Física
12

Construção e caracterização de um laser de CO2 para microcirurgias

Lima, Erzeli Jacques de 12 March 1984 (has links)
Orientador: Jorge Humberto Nicola / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-07-17T07:42:47Z (GMT). No. of bitstreams: 1 Lima_ErzeliJacquesde_M.pdf: 25666315 bytes, checksum: deea48e89f3649b7e92de81759ba200a (MD5) Previous issue date: 1984 / Resumo: O relacionamento entre a física e a medicina é importante no sentido de que tem um alto interesse social, econômico e político em um país como o Brasil. Social, porque dá oportunidade de que a sociedade desfrute de melhores condições de atendimento clínico, advindo de aplicações geradas da interação entre físicos e médicos. Econômicas porque o desenvolvimento de equipamentos obtidos desta maneira, em geral, são muito mais baratos que os similares importados, e político porque permite que um grupo altamente treinado, como o formado por físicos e médicos, una esforços no sentido de tornar o país independente da tecnologia estrangeira. Este trabalho primeiramente tece considerações sobre os processos tradicionais de cirurgia utilizados pelos médicos. Após isto introduz o uso de lasers em geral como uma ferramenta poderosa nas terapias e tratamentos de desordens orgânicas. Apresenta os parâmetros de mérito para a utilização deste moderno instrumental terapêutico. O laser de CO2 é apresentado com destaque para suas aplicações nas microcirurgias e são consideradas as diversas áreas médicas onde é utilizado. Em seguida, o laser de CO2 é discutido na sua base teórica, onde consideramos o laser em si e destacamos o estudo de molécula de dióxido de carbono, a inversão de população para a ação laser e os mecanismos de relaxação. Passamos então a parte prática do trabalho que é o roteiro da construção de um laser de CO2 nacional e a obtenção dos parâmetros de mérito para a ótima utilização deste aparelho. O sistema por nós construído é seguro e facilmente manipulável por médicos cirurgiões. Tecemos então considerações sobre as aplicações deste laser de CO2 nacional e o acompanhamento cirúrgico em diversas intervenções realizadas com este equipamento / Abstract: In a country like Brasil, with its social, economical and political characteristics, a close interrelation between physics and medicine is highly desirable. This interaction may have a social impact among the population, yelding an improvement of the general health conditions. From the economical point of view, the development of the required equipment by a highly trained group is much less expensive than purchasing foreign similars. In addition, large groups of physicians and physicists working in collaboration will join efforts in the process of making the country independent from foreign technology. In this work we firstly discuss the traditional processes of common use in cirurgy. It follows an introduction of the laser techniques in medicine, showing the laser as a powerful tool in the treatments of organic diseases. The CO2 laser is presented with prominence for use in microcirurgies and the medical areas where the laser is used are considered. After this, we discuss the theoretical basis of the CO2 lasers, specially in relation to the study of the carbondioxide molecule, the population inversion and the relaxation processes. We finally discuss practical aspects of our work, aiming at construction of national CO2 lasers and optimizing the different parameters for best use. The system devised by us is of easy handling for medical personnel with a high standard for safety / Mestrado / Física / Mestre em Física
13

Modelo termodinâmico para o aquecimento não-linear, a laser, e suas aplicações ao processamento de materiais

Orea, Alfredo Cruz 20 January 1994 (has links)
Orientador: Carlos Alberto da Silva Lima / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-07-18T21:39:09Z (GMT). No. of bitstreams: 1 Orea_AlfredoCruz_D.pdf: 11247796 bytes, checksum: 29af5d519feb6eea42d700eac90015b7 (MD5) Previous issue date: 1994 / Resumo: O tema da modelização computadorizada do processamento a laser de materiais continua em evidência em Ciência dos Materiais. Percebe-se, com clareza cada vez maior, a absoluta necessidade de se desenvolver uma proposta bem fundamentada, que leve ao cálculo preciso do padrão de evolução temporal( da distribuição espacial da temperatura, numa amostra aqueci da a laser. Os vários modelos que tem aparecido na literatura, carecem da necessária generalidade, perdida seja pela introdução ab-initio de formulações simplistas, seja pelo apelo aproximações de cálculo, que acabam por restringir seu uso, quando muito, situações específicas que os motivaram. Para complicar, ainda mais, este quadro, o uso de laser pulsados de alta intensidade no aquecimento de sólidos submete-os à bruscas variações de temperatura, à taxas de aquecimento e resfriamento incrivelmente altas, cujas excursões de amplitude levam o processo de aquecimento a atravessar as fronteiras de uma ou mais transições de fase e/ou a disparar processos simultâneos fortemente marcados pela presença de endo ou exotermicidade. Nestas condições, é impossível, sem super-simplificar o problema, ignorar as variações que sofrem os valores dos parâmetros ópticos e térmicos, em função da variação de temperatura. Isto tem enorme importância na formulação correta do problema e na solução da equação de difusão térmica. Isto não só a torna altamente não-linear, como requer que seja resolvida com condições de contorno móveis. O cálculo numérico torna-se a única esperança de se obter uma solução para o problema e, ainda assim, com riscos de se enfrentar tempos de computação proibitivamente longos e instabilidades numéricas de difícil controle. Vê-se porque, via-de-regra, o apelo às aproximações está sempre presente, no trato dos problemas de processamento a laser de materiais, sob condições de aquecimento fortemente não-linear. Foi diante de um tal quadro que, como tema desta Tese, enfrentamos este formidável problema na sua formulação mais complexa. Propunhamo-nos a fazer uma avaliação minuciosa do campo. Minimamente, nossa expectativa era obter, de uma vez por todas, uma visão crítica, muito clara, das falhas e equívocos que resultam de se aplicar certos tipos de aproximações ao tratamento de situações que não as sustentam, em processamento de materiais com lasers. A medida que nosso projeto se desenvolvia, foi ficando claro que tínhamos conseguido obter uma formulação sem aproximações, tridimensional, completamente não linear do tratamento do aquecimento a laser de um sólido, explorando aspectos da termodinâmica de equilíbrio local, devidamente justificados. O modelo mostrou-se possuidor da generalidade e flexibilidade que buscávamos, sendo aplicável a um amplo espectro de problemas de aquecimento e/ou processamento de materiais, mesmo quando estes incluem a intervenção de processos específicos locais, em paralelo ao aquecimento em si, os quais produzem geração / consumo local de energia térmica (por exemplo, transições de fase, reações químicas, etc.). O ponto de partida foi o estabelecimento das bases físicas do modelo, introduzindo uma temperatura local T(x,y,z,t) para o sistema (sólido aquecido a laser). A questão aqui é que, na situação contemplada, o sólido se encontra ao longo do aquecimento, numa situação descrita termodinamicamente como "fora do equilíbrio". Não obstante, pode-se considerá-lo subdividido em células macroscopicamente pequenas, em cada uma das quais se pode aplicar o postulado do equilíbrio termodinâmico local. Isto permitiu que, além de definir a temperatura termodinâmica local, e outras variáveis termodinâmicas, pudéssemos, também, definir as densidades locais dos vários potenciais termodinâmicos. Para isto foi preciso reformular o problema da difusão de calor descrevendo-o em termos de um par de quantidades termodinâmicas relacionadas entre si: a densidade entálpica W(x,y,z,t) e a temperatura T(x,y,z,t). Elas tiveram que ser calculadas numericamente, de forma auto-consistente, usando o sistema integro- diferencial de equações formado pela equação não-linear 3-D de difusão de calor, com fonte de calor a laser arbitraria e a relação termodinâmica constitutiva que liga a densidade de entalpia com a temperatura. Resultaram, assim, valores auto-consistentes para W(x,y,z,t) e T(x,y,z,t) a partir dos quais, explorando as definições termodinâmicas usuais, foram calculadas as densidades de entropia, de energia livre de Gibbs e de energia livre padrão. A implementação numérica do modelo físico acima descrito exigiu que produzíssemos um novo esquema de cálculo e desenvolvêssemos o correspondente algoritmo numérico. Partimos, então, para escrever o programa Fortran correspondente, preparado para processamento tanto no computador IBM-3090 (processador vetorial) como em estações de trabalho SUN SPARC, explorando o esquema explicito no método das diferenças finitas. As aplicações de nosso modelo voltaram-se para dois problemas em processamento a laser em que tínhamos interesse: a) microfusão com laser no IV; b) deposição termoquímica, induzida a laser, de camadas de óxidos em substratos metálicos. Em ambos os casos, nossas previsões teóricas foram confrontadas com dados experimentais disponíveis, tendo-se sempre obtido muito boa concordância, principalmente face ao que conseguiram outras formulações. No caso dos filmes de óxidos, o tratamento foi tão amplo que o assunto mereceu um capítulo aparte no corpo da Tese. Em resumo, produzimos e aplicamos um esquema alternativo, com base na termodinâmica de equilíbrio local, que se mostrou particularmente apto no tratamento de problemas de processamento a laser quando as condições de radiação são tais que tornam o problema térmico associado altamente não-linear / Abstract: The subject of the computer modeling of the laser processing of materials continues to be highly topical in Materials Science. Basic to such an achievement was to have an well posed proposition to determine the time evolution of the temperature anywhere in the laser heated sample. Though models of such a kind abound in the literature, they are either rather crude approaches to the problem or, in one stage or another of the model formulation and/or numerical computations, they call for approximations that normally render them applicable only under severely restricted conditions. To further complicate this picture, pulsed laser heated solids frequently undergo so large temperature excursions, at such incredibly large heating/ cooling rates, that make them cross the boundaries of one or more phase transitions and/or make them the seat of markedly endothermic or exothermic processes along with the heating itself. It is no longer feasible to ignore the temperature variation of the various parameters entering the heat diffusion equation, associated with optical and or thermal propertied of the solid. this not only makes the equation highly non-linear but asks that it be solved with moving boundary conditions. The numerical computations are the Bole hope to get any solution to this problem, but even them are now severely restricted by prohibitively large computer processing times, or by uncontrollable numerical instabilities. All this have justified, in a certain sense, the use of the forementioned approximations for the full problem of materials processing under highly non-linear heating laser irradiation conditions. We decided, in this Thesis, to face such a formidable problem in its fullest picture. Minimally, we expected to get out of such enterprise with a carefully evaluated picture of the pitfalls and shortcomes that result from unduly applications of certain approximated formulations to specific laser processing problems. However, we ended up with an approximations free formulation for the three-dimensional fully non-linear laser heating problem, which explored well justified aspects of local equilibrium thermodynamics. It proved to have sufficient generality and flexibility to be applicable to a large spectrum of laser heating and/or processing problems, even when they included intervention of local specific processes, in parallel to the heating itself, which develop / consume heat energy (such as phase transitions, chemical reactions, etc). We started out by laying the physical foundations of the model by introducing a local temperature T(x,y,z,t) for the system (laser heated solid) which, while being globally in a non-equilibrium condition, could be divided up into macroscopically small individual cells within which the postulate of local thermodynamic equilibrium could be applied. This allowed UB not only to define the local thermodynamic temperature, and other thermodynamic variables, but as well to define the local densities for the various thermodynamic potentials. This required reformulating the heat diffusion problem in terms of a pair of the thermodynamically related quantities: the enthalpy density (W(x,y,z,t)) and temperature (T(x,y,z,t)). They had to be numerically computed in a self-consistent fashion using the integro-differential system of equations formed by the fully non-linear 3-D heat equation, with an arbitrary laser source as the heating element, and the thermodynamic constitutive relation linking enthalpy density and temperature. As a result W(x,y,z,t) and T(x,y,z,t) were self-consistenly computed and from them, using the normal thermodynamic definitions, we got the local densities for the entropy, for Gibss free energy and for the standard free energy. In order to able to numerically implement the physical model described above we had to devise afresh a computational scheme and develop the corresponding numerical algorithm. Prepared to run in a vector processing IBM-3090 computer and / or in SUN - SPARC Work Stations, a FORTRAN code was written which explored an explicit finite differences numerical scheme. Applications of the model addressed two problems in laser processing: (a) ¿micro fusion with IR lasers (b) -laser induced thermochemical deposition of oxide layers on metallic substrates. In both cases the predictions of the model were confronted with experiment, wherever possible, with very good agreement. The laser induced oxide layer deposition problem was dealt with at length, constituting one of the chapters in the Thesis. Overall, we have developed and applied an alternative scheme based on local equilibrium thermodynamics that is particularly suited to deal with laser processing problems when the irradiation conditions bring the associated thermal problem into a highly non-linear regime / Doutorado / Física / Doutor em Ciências
14

Formulação tridimensional completa para o aquecimento a laser de sólidos em regime não-linear : modelo e aplicações

Diniz Neto, Omar de Oliveira 26 January 1995 (has links)
Orientador: Carlos Alberto da Silva Lima / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-07-19T22:33:10Z (GMT). No. of bitstreams: 1 DinizNeto_OmardeOliveira_D.pdf: 4621577 bytes, checksum: 4b3b9d5ffa9940ae772c4a246ff74739 (MD5) Previous issue date: 1995 / Resumo: O advento dos lasers causou uma grande revolução na área de processamento de materiais, que atingiu um rápido desenvolvimento, nos últimos anos. O amplo espectro de materiais processáveis atualmente com lasers o comprova. Ainda assim, um grande número de pesquisadores continua buscando respostas para aspectos ainda não elucidados dos desafios lançados pela interação de laser com a matéria, em condições de alta intensidade de irradiação. Dentro desse contexto, nossa Tese dedicou-se a investigar em extensão e profundidade o controle paramétrico do aquecimento a laser, tendo em vista explorar numa etapa posterior sua influência na viabilização do controle conformacional do processo de microperfuração de materiais com lasers. Estudando, entre outras coisas, as condições e as características peculiares do avanço da frente de calor num sólido irradiado por um laser potente, em diversas configurações operacionais, investigamos, em particular, os efeitos da forma espacial e duração do pulso do laser, condutividade térmica e da difusividade térmica da amostra, assim como os efeitos de variações nas grandezas físicas que interferem no processo de acoplamento laser-sólido, tais como a refletividade e o coeficiente de absorção, sobre a forma e evolução temporal das isotermas nas amostras. Isto se dá porque a variação da temperatura afeta todos os parâmetros físicos que regem o processo de aquecimento a laser. Em nosso estudo consideramos, além de amostras homogêneas, amostras estratificadas de duas e três camadas, e amostras intrinsicamente heterogêneas, i.e., amostras onde a condutividade e difusividade térmicas variam continuamente com a profundidade da amostra. Para obter a distribuição temporal e espacial da temperatura num sólido aquecido localmente por um laser, e proceder os estudos acima delineados, nossa abordagem partiu especificamente de uma versão não-linear da equação parabólica para difusão de calor , porém com estrita observação dos limites de validade da teoria de Fourier. Além da não-linearidade que advém da dependência explícita dos parâmetros térmicos do material com a temperatura, interessou-nos também, investigar, em detalhe, os efeitos da variação correspondente da refletividade e coeficiente de absorção. A metodologia de tratamento que demos ao problema envolve a solução numérica das equações linear e não-linear de difusão de calor. Desenvolvemos e exploramos um novo algoritmo, específico para tratar a formulação dada a questão no presente trabalho. Nele, a discretização das funções e derivadas que aparecem na equação de difusão é feita através do método das diferenças finitas. Usamos uma versão modificada, que desenvolvemos, da formulação de Crank - Nicholson para obtermos um sistema de equações algébricas acopladas, que foi resolvido pelo método iterativo das sobre relaxações sucessivas (SOR). A implementação deste método foi feita em linguagem FORTRAN, executada no computador IBM 3090 da UNICAMP, e posteriormente, em estação de trabalho SUN-SPARC II. Em resumo, os cálculos com base em nosso modelo levaram-nos a concluir que é possível, em princípio, controlar a forma e a velocidade de avanço da frente de calor (isoterma de fusão) num sólido, a temperatura máxima no centro focal, o tempo necessário para alcançá-la e as taxas de aquecimento e resfriamento, dentre outros, atuando-se judiciosamente tanto sobre os parâmetros térmicos como sobre os parâmetros ópticos da amostra. Por exemplo, ao tratar com as amostras estratificadas (camadas sucessivas com propriedades adequadamente diferenciadas) ficou evidente uma clara tendência da isoterma de fusão a assumir uma conformação cada vez mais cilíndrica, em oposição ao perfil tipicamente cônico da correspondente isoterma em materiais homogêneos. Este efeito se torna ainda mais crítico quando o material tem essas propriedades variando continuamente com a profundidade. Esta Tese, enfim, elucida em detalhe os fundamentos teóricos e práticos que devem ser observados no controle paramétrico do processamento de materiais com laser com vista à obtenção de uma moldagem conformacional, como por exemplo, na micro-perfuração de materiais com lasers / Abstract: Laser processing of materials has undergone substantial development in recent years and there is an ever growing family of materials that are now amenable to such treatment. Yet, some problems in this area are far from settled, and the pertinent scientific research is still responsible for a wealthy of papers. This Thesis is a contribution towards some of these problems. Specifically, we have considered in depth and in breadth the problem related to the possibility of parametric control of the laser heating. We meant to studying its influence upon the controlled shaping of holes in laser microdril1ing processes. A full model and its numerical implementation have been developed accordingly and applications under different conditions have been considered. In particular, in a careful study of the heat front surface advance in a laser heated solid under different operational configurations, we have dealt with the effects upon the form and evolution of the fusion isotherm in the sample, coming from the shape and length of the laser pulse, the changes in the thermal conductivity and in the thermal diffusivity, as well as those in other physical variables interfering in the laser vs. Solid interaction, such as the optical reflectivity and absorption coefficient. Such effects are due to the fact the temperature affects all the physical parameters involving the laser heating process. Our studies were applied to homogeneous samples and to both stratified samples(with two and three layers) and intrinsically heterogeneous samples, e.g., those where such properties as thermal conductivity and thermal diffusivity vary continuously with depth. To calculate spatial and temporal temperature distributions in the laser heated sample and carry on the forementioned studies, we resorted to a formulation based on the mathematically non-linear heat parabolic equation, under strict observation of the bounds imposed by Fourier law. Thus, besides investigating the effects of the non-linearity that arise from both thermal parameters of the material being temperature dependent, we have also considered , in detail, the effects of the corresponding variations in the reflectivity and absorption coefficient. The calculations were based on a procedure that resorted to the use of Kirchoff transform followed by numerically solving the resulting equation under the given boundary conditions using finite differences through our modified version of the Crank-Nicholson scheme and a numerical iteration that explored the successive over relaxation (SOR) method. This was implemented by coding a corresponding program in FORTRAN to run in the IBM 3090 vector processing computer which, later on, was also adapted to run in SUN-SPARC II workstations. To sum up, our model calculations took us to conclude that, in principle, it is possible to control both shape and speed of the laser heating front (fusion isotherm), the maximum focal temperature, the time it takes to reach it and the heating and cooling rates, among others, by judiciously acting upon both the thermal and the optical sample parameters. For example, in the case of stratified samples (several layers in succession having adequately differentiated properties) it became clear that there appears a clear trend on the fusion isotherm towards becoming gradually more cylindrical in shape, as opposed to the typical conical shape exhibited by the corresponding isotherm in laser heated homogeneous materials. This behavior can be seen to be even more critical when we one takes on a sample where these properties vary continuously with depth. Overall, this Thesis discloses in detail the theoretical and practical foundations that have to be considered when the parametric control of the laser processing of a material, to achieve conformational molding, e.g. in laser microdrilling of materials, is at issue / Doutorado / Física / Doutor em Ciências

Page generated in 0.0851 seconds