• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 2
  • Tagged with
  • 43
  • 43
  • 22
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Frequency tunable microchip lasers for coherent sensor applications /

Keszenheimer, James A. January 1992 (has links)
Thesis (Ph.D.)--Tufts University, 1992. / Submitted to the Dept. of Electrical Engineering. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
32

Selective laser sintering of poly(L-Lactide)/carbonated hydroxyapatite porous scaffolds for bone tissue engineering

Zhou, Wenyou, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Also available in print.
33

Surface engineering and characterization of laser deposited metallic biomaterials

Samuel, Sonia. Banerjee, Rajarshi, January 2007 (has links)
Thesis (M.S.)--University of North Texas, May, 2007. / Title from title page display. Includes bibliographical references.
34

Structural damage detection using higher-order finite elements and a scanning laser vibrometer /

Jin, Si, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 195-198). Also available on the Internet.
35

A calculation concept to reduce manufacturing cost on laser sintering machines

Starz, Anton Johannes January 2008 (has links)
Thesis (M. Tech.) - Central University of Technology, Free State, 2008 / A company’s ability to produce products faster and more economically may lead to a competitive edge in the international market. The reduction of development costs and shortened development time will undeniably depend on effective organisational structures that are based on effective information- and communication techniques and manufacturing technologies. An innovative manufacturing technology that impacts on rapid product development is Rapid Prototyping (RP). The Centre for Rapid Prototyping and Manufacturing (CRPM) works closely with South African companies, supporting them with common mechanical engineering solutions and specialising in the manufacturing of prototypes. One of the options offered in the manufacture of prototypes is the Laser Sintering (LS) process. It is however, difficult to determine the product cost for the building volume used to manufacture the prototypes. Prototypes from different clients can be manufactured at the same time in the same process. The problem however, is how to calculate the costs for each prototype and to offer the clients an accurate quotation for the manufacture of the prototype. Therefore, it is necessary to design a calculation concept, which includes all accrued costs and allocate these to the different parts/prototypes. As it is problematic to calculate the manufacturing cost of prototypes, it is necessary to analyse all the effects, parameters and influences on the manufacturing process in order to determine the manufacturing time, and ultimately the machine costs. This is needed to calculate the total cost of one platform and the cost of each individual part. The project, through various experiments determined how to allocate the costs, through a correlation between part volume and platform height. The aim of the study was to determine a calculation concept to estimate the total platform cost and the cost of each individual part. Furthermore, the estimated cost was compared with the actual cost to determine the deviation between the calculation methods, and lead to a calculation concept that can be used to predict and reduce the manufacturing costs. The results obtained from the research were used for an exact calculation and reduction of prototype unit costs manufactured on LS machines, which gave three basic advantages: * Manufacturing costs were reduced to benefit clients, which meant that they could invest more in the design of new prototypes and products, to improve customer satisfaction * Prototype manufacturing on expensive RP machines could be optimised by using more prototypes and lower costs for entering the market. * The calculation risk could be minimised, which lowered the risk of losing money on a project and resulted in better planning for available resources.
36

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Samuel, Sonia 05 1900 (has links)
Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior wear resistance than Ti-6Al-4V.
37

Laser based in-situ formation of ceramic coatings on titanium.

Ochonogor, Onyeka Franklin January 2013 (has links)
M. Tech. Metallurgical Engineering / Titanium and its alloys exhibit poor tribological characteristics. The poor resistance to sliding wear of Ti6Al4V alloy makes it susceptible to severe wear at the surface during sliding contact. This could cause galling and seizing during sliding contact. Ti6Al4V alloy also have poor corrosion resistance under critical conditions. Some problems with Ti6Al4V MMCs produced by laser cladding technique in most cases is poor bonding as a result of wetting properties between the ceramic and metal powders for reinforcement. Occurrence of porosity is another factor which can reduce the mechanical properties of MMCs. Occurrence of agglomerates is also a concern due to poor mixing of reinforcement powders. This project is aimed at investigating the effect of laser cladding of titanium alloy substrate with zirconium (Zr), titanium carbide (TiC), titanium (Ti) reinforcement additions. The effect of combination of these powders using various fractions and variable cladding parameters on the substrate will be investigated.
38

Runtime and jitter of a laser triggered gas switch

Hutsel, Brian T. Kovaleski, Scott D. January 2008 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on September 24, 2009). Thesis advisor: Dr. Scott Kovaleski. Includes bibliographical references.
39

Laser surface hardening of AISI 1518 alloy steel

Zhang, Tao January 2010 (has links)
The laser surface hardening process will enhance the hardness profile of automotive components and ensure better process control and predictability of quality as compared to the conventional hardening processes. A 2KW Nd-YAG laser system was used to harden the surface of alloy steel with various process parameters (laser power, focal spot diameter and beam velocity). The results (microhardness, microstructure change and residual stress distribution) were measured and analyzed with Vickers microhardness tester, optical/electron microscope and hole-drilling residual stress equipment. Statistical analyses of the experimental data were used for explaining the relationships between process parameters, microhardness and microstructure. General thermal hardening was applied in the research to show the influence of heating temperature and cooling method on microstructure and mechanical properties. Also, the results were compared with laser surface hardening process from microhardness, microstructure and residual stress to show the advantage of laser surface hardening. Through analysis of the results of the laser surface hardening experiments, a suitable laser power density and interaction time for optimum hardening was obtained. The presented laser surface hardening process can also be applied to other alloy steel surface hardening process.
40

Laser Surface Treatment of Amorphous Metals

Katakam, Shravana K. 05 1900 (has links)
Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing conditions. The microstructure evolution and the corrosion mechanisms operating are evaluated using post processing and post corrosion analysis.

Page generated in 0.1077 seconds