• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laserstrahlschneiden von Faser-Kunststoff-Verbunden

Fürst, Andreas 19 June 2017 (has links) (PDF)
Die Dissertation widmet sich dem Schneiden von Faser-Kunststoff-Verbunden mit einem Laserstrahl. Herausforderung ist dabei der thermisch und optisch inhomogene Aufbau dieser Werkstoffklasse. Die Untersuchungen erfolgten an technisch relevanten Werkstoffen, basierend auf Glasfasern und thermoplastischer Matrix sowie Kohlenstofffasern mit duroplastischer Matrix. Eine grundlegende Betrachtung zur Werkstoff-Laserstrahl-Wechselwirkung zeigte zunächst den Einfluss der jeweiligen Einzelwerkstoffe und deren Mischungsverhältnis auf die absorbierten Anteile von einfallender Laserstrahlung mit den Wellenlängen λ = 1,07 µm und λ = 10,6 µm. Besondere Beachtung wurde dem Ansatz der simultanen Bearbeitung der Werkstoffe mit Laserstrahlung beider Wellenlängen gewidmet. Zielstellung war, bei gleichen optischen Randbedingungen die gute Fokussierbarkeit der Strahlung mit der Wellenlänge λ = 1,07 µm auszunutzen, um hohe Intensitäten auf dem Werkstoff zu erzeugen. Gleichzeitig sollte die Strahlung mit der Wellenlänge λ = 10,6 µm genutzt werden, um hohe absorbierte Anteile der einfallenden Laserstrahlung, vorranging im Matrixwerkstoff zu erhalten. Bei Verwendung eines Remote-Bearbeitungssystems können die Wechselwirkungszeit zwischen Laserstrahlung und Werkstoff minimiert und so hohe Vorschubgeschwindigkeiten erzeugt werden. Mit dem Mischungsverhältnis der Laserleistungen der jeweiligen Strahlquellenanteile steht dem zukünftigen Anwender ein neuartiger Freiheitsgrad zur Lasermaterialbearbeitung zur Verfügung. Im Ergebnis dieser Arbeit wurde der Einfluss dieses Parameters auf die Schneidbarkeit der Werkstoffe dargestellt. Der Endanwender erhält so eine grundlegende Orientierung zum Schneidverhalten von Faser-Kunststoff-Verbunden in Abhängigkeit von der jeweiligen Wellenlänge sowie der Schnittorientierung gegenüber der Faserorientierung der Werkstoffe.
2

Laserstrahlschneiden von Faser-Kunststoff-Verbunden

Fürst, Andreas 19 June 2017 (has links)
Die Dissertation widmet sich dem Schneiden von Faser-Kunststoff-Verbunden mit einem Laserstrahl. Herausforderung ist dabei der thermisch und optisch inhomogene Aufbau dieser Werkstoffklasse. Die Untersuchungen erfolgten an technisch relevanten Werkstoffen, basierend auf Glasfasern und thermoplastischer Matrix sowie Kohlenstofffasern mit duroplastischer Matrix. Eine grundlegende Betrachtung zur Werkstoff-Laserstrahl-Wechselwirkung zeigte zunächst den Einfluss der jeweiligen Einzelwerkstoffe und deren Mischungsverhältnis auf die absorbierten Anteile von einfallender Laserstrahlung mit den Wellenlängen λ = 1,07 µm und λ = 10,6 µm. Besondere Beachtung wurde dem Ansatz der simultanen Bearbeitung der Werkstoffe mit Laserstrahlung beider Wellenlängen gewidmet. Zielstellung war, bei gleichen optischen Randbedingungen die gute Fokussierbarkeit der Strahlung mit der Wellenlänge λ = 1,07 µm auszunutzen, um hohe Intensitäten auf dem Werkstoff zu erzeugen. Gleichzeitig sollte die Strahlung mit der Wellenlänge λ = 10,6 µm genutzt werden, um hohe absorbierte Anteile der einfallenden Laserstrahlung, vorranging im Matrixwerkstoff zu erhalten. Bei Verwendung eines Remote-Bearbeitungssystems können die Wechselwirkungszeit zwischen Laserstrahlung und Werkstoff minimiert und so hohe Vorschubgeschwindigkeiten erzeugt werden. Mit dem Mischungsverhältnis der Laserleistungen der jeweiligen Strahlquellenanteile steht dem zukünftigen Anwender ein neuartiger Freiheitsgrad zur Lasermaterialbearbeitung zur Verfügung. Im Ergebnis dieser Arbeit wurde der Einfluss dieses Parameters auf die Schneidbarkeit der Werkstoffe dargestellt. Der Endanwender erhält so eine grundlegende Orientierung zum Schneidverhalten von Faser-Kunststoff-Verbunden in Abhängigkeit von der jeweiligen Wellenlänge sowie der Schnittorientierung gegenüber der Faserorientierung der Werkstoffe.
3

Influence of notches due to laser beam cutting on the fatigue behavior of plate-like shaped parts made of metastable austenitic stainless steel

Pessoa, Davi Felipe 04 March 2020 (has links)
Laser beam cutting is an attractive and innovative manufacturing process which has many advantages compared to conventional cutting methods. However, with increasing workpiece thickness an increase of the roughness along the kerf surface can be observed, which, in turn, can negatively affect the mechanical properties, in particular the fatigue strength. In this context, the impact of laser cutting on fatigue behavior is discussed in this work. Specimens were cut out by disk laser from sheets with 2 mm, 4 mm and 6 mm thickness made of metastable austenitic stainless steel type AISI 304. Fatigue specimens with different surface conditions were tested in order to separately evaluate the influence of the different kinds of macroscopic defects produced by the cutting process. Additionally, the notch effect sensitivity for different amounts of deformation-induced α'-martensite induced before cyclic tests was evaluated using a specific notch geometry. Furthermore, based on the fact that high frequency testing is performed in the present investigation, the likely influences of test frequency on material response must be considered. For this reason and because metastable austenitic stainless steels are well known for their strain rate sensitivity, the steel AISI 304 and the role of surface micro-defects produced by laser beam cutting were analyzed regarding the influence of load frequency on the cyclic response and fatigue behavior, and the findings of the investigation are thoroughly discussed in this work. Fatigue tests were performed at load frequencies of 100 Hz and 1,000 Hz using two resonance pulsation test systems, as well as by means of a servo-hydraulic test machine at 1 Hz and 50 Hz. Fractographic analyses served to evaluate the failure-relevant characteristics responsible for crack initiation. Moreover, scanning electron microscopy was used to assess the changes caused by laser cutting on the geometrical and microstructural features. The qualitative analyses of the cut kerf characteristics were accomplished by means of optical microscopy. The cyclic deformation behavior was characterized based on the evaluation of stress-strain hysteresis loops and temperature measurements. The deformation-induced phase transformation from γ-austenite to α'-martensite was globally and locally evaluated by means of magneto-inductive measurements and electron backscattered diffraction analysis, respectively. The analyses showed that laser beam cutting creates three kinds of defects, which are a pronounced relief-like structure along the cut surface, burr in the underside of the cut edge and pores in the interface between the recast layer and base material or inside the recast layer. As a consequence, the fatigue strength of parts cut by laser beam is around 40% lower in comparison to specimens in a macroscopically quasi defect-free state. The most significant reduction of fatigue life is attributed to the notch effect of the burr, followed by the notch effect created by pores for 4 mm and 6 mm thick specimens, while surprisingly the influence of the surface relief is of minor significance. An evaluation of the fatigue results based on comprehensive fractographic analyses allows to explain the reasons for distinct differences between the aforementioned influence factors. Furthermore, the notch sensitivity of the steel AISI 304 increases as the amount of α'-martensite formed prior to the cyclic experiments becomes higher. Moreover, the impact of test frequency on the cyclic deformation response, deformation-induced phase transformation and fatigue behavior was characterized as well as the role of surface micro-defects on the fatigue behavior as a function of test frequency was identified. The assessment showed that higher amounts of α'-martensite formation and lower plastic strain amplitudes were observed when the cyclic experiments were carried out at lower frequency, promoting higher fatigue strengths. However, the influence of test frequency for specimens containing surface micro-defects is dominant in the low cycle fatigue to high cycle fatigue regime, whereas in the high cycle fatigue and very high cycle fatigue range the fatigue life determining parameter is the severity of the micro-notches present along the laser cut surface. / Das Laserstrahlschneiden stellt ein innovatives Verfahren dar, welches im Vergleich zu konventionellen Schneid prozessen eine Vielzahl an Vorteilen aufweist, aber mit zunehmender Blechdicke auch den entscheidenden Nachteil der Zunahme der Oberflächenrauheit der Schnittkanten, was sich negativ auf die mechanische Festigkeit, insbesondere die Schwingfestigkeit, auswirken kann. Deswegen ist die Anwendung dieser Technik zur Herstellung von strukturellen Bauteilen aufgrund der Bildung ausgeprägter Oberflächenreliefs und dem Fehlen zuverlässiger Schwingfestigkeitsdaten begrenzt. In diesem Zusammenhang werden in dieser Arbeit die Auswirkungen des Laserschneidens auf das Ermüdungsverhalten diskutiert. Aus Blechen des metastabilen Austenitstahls AISI 304 mit Dicken von 2 mm, 4 mm und 6 mm wurden Proben mit Hilfe eines Scheibenlasers herausgeschnitten. Ermüdungsproben unterschiedlicher Oberflächenqualität wurden getestet, um den Einfluss der verschiedenen Arten von makroskopischen Defekten, die durch den Schneidprozess erzeugt wurden, separat zu bewerten. Zusätzlich wurde die Empfindlichkeit der Kerbwirkung bei unterschiedlichen Gehalten an verformungsinduziertem α'-Martensit, welcher vor den zyklischen Versuche erzeugt wurde, unter Verwendung einer spezifischen Kerbgeometrie ausgewertet. Außerdem, basierend auf der Tatsache, dass in der vorliegenden Untersuchung eine Hochfrequenzprüfung durchgeführt wurde, wurden der Stahl AISI 304 und die Rolle von Oberflächenmikrodefekten durch das Laserstrahlschneiden hinsichtlich des Frequenzeinflusses auf das zyklische Ansprechverhalten und Ermüdungsverhalten analysiert. Ermüdungsprüfungen wurden bei Frequenzen von 100 Hz und 1000 Hz unter Verwendung von zwei ähnlichen Resonanzpulsationstestsystemen, sowie mittels einer servohydraulischen Prüfmaschine bei 1 Hz und 50 Hz durchgeführt. Fraktographische Analysen dienten dazu, die für die Rissinitiierung verantwortlichen fehlerrelevanten Eigenschaften zu bewerten. Darüber hinaus wurde die Rasterelektronenmikroskopie verwendet, um die durch das Laserschneiden verursachten Veränderungen der geometrischen und mikrostrukturellen Eigenschaften zu bewerten. Die qualitativen Analysen der Schnittkanteneigenschaften wurden mittels optischer Mikroskopie durchgeführt. Das zyklische Verformungsverhalten wurde anhand der Auswertung von Spannungs-Dehnungs-Hystereseschleifen und Temperaturmessungen charakterisiert. Die verformungsinduzierte Phasenumwandlung von γ-Austenit zu α'-Martensit wurde global und lokal mittels magneto-induktiven Messungen bzw. Elektronenrückstreubeugungsanalyse ausgewertet. Die Analysen zeigen, dass ein ausgeprägtes Relief entlang der Schnittfläche sowie ein Grat an der Unterseite der Schnittkante bei 2 mm, 4 mm und 6 mm dicken Platten gebildet wurden. Zusätzlich haben sich Poren in der Grenzfläche zwischen dem umgeschmolzenen Material und dem Grundmaterial oder innerhalb des umgeschmolzenen Materials bei den 4 mm und 6 mm dicken Platten gebildet. Infolgedessen zeigen die laserstrahlgeschnittenen Proben eine 40% niedrigere Dauerfestigkeit im Vergleich zu den Proben, welche in einem makroskopisch quasi defektfreien Zustand sind. Obwohl beim Schneiden dickerer Platten gröbere Oberflächen entstehen, ist die Verringerung der Dauerfestigkeit entgegen den Erwartungen unabhängig von der Probendicke. Die größte Verringerung der Ermüdungslebensdauer ist auf die Kerbwirkung des Grates zurückzuführen, gefolgt von der Kerbwirkung des Oberflächenreliefs für 2 mm dicke Platten bzw. des Einflusses von Poren im Fall der 4 mm und 6 mm dicken Platten. Ein Zusammenhang zwischen der Phasenumwandlung von γ-Austenit zu α'-Martensit, die durch zyklische Verformung entsteht, und der Lastfrequenz wurde nachgewiesen. Eine niedrigere Prüffrequenz ruft für den untersuchten unsymmetrischen Belastungsverlauf einen signifikanten zyklischen Kriecheffekt, höhere mittlere Dehnungsniveaus, höhere Mengen an α'-Martensitbildung, geringere plastische Dehnungsamplituden und daher höhere Ermüdungsfestigkeiten hervor. Bei Proben mit Oberflächenmikrodefekten, die durch das Laserstrahlschneiden erzeugt werden, hängt der Einfluss der Prüffrequenz auf das Ermüdungsverhalten vom aufgebrachten Belastungsniveau ab. Dieser Einfluss dominiert im LCF zu HCF Bereich, während im Übergang vom HCF in den VHCF Bereich die Ermüdungslebensdauer von der Schwere des Schadens abhängig ist, welcher in der Probe durch lebensdauerbestimmende, zufällig entlang der lasergeschnittenen Reliefoberfläche eingebrachten Mikrokerben hervorgerufen wird.
4

Laserstrahltiefschweißen hochfester Feinkornbaustähle in der Serienproduktion: Experimentelle Bewertung werkstoffbedingter und fertigungstechnischer Einflüsse auf die Prozess- und Verbindungsstabilität

Wirnsperger, Franz 16 October 2020 (has links)
In der serienmäßigen Verarbeitung von hochfesten Feinkornbaustählen zeigte sich, dass verschiedene Stähle gleicher Festigkeitsklasse zu stark unterschiedlichen Schweißergebnissen beim Laserstrahltiefschweißprozess führen können. Die materialbedingten Einflüsse auf das Schmelzbadverhalten sind bisher in keiner bekannten Forschungsarbeit untersucht worden. Diese Arbeit erweitert die bisherige Forschung mit neuen Erkenntnissen aus umfangreichen Materialanalysen und Schweißversuchen. Dadurch wurde es möglich, ein ganzheitliches Erklärungsmodell der materialbedingten Einflüsse beim Laserstrahltiefschweißprozess zu beschreiben. Diese Arbeit fokussierte sich einerseits auf die Analyse der chemischen Zusammensetzung der Grundmaterialien und die Auswirkungen der Legierungselemente auf die Schweißnahtvorbereitung in Kombination mit dem Vorprozess Laserstrahlbrennschneiden. Andererseits wurde gezielt die Auswirkung der chemischen Grundmaterialzusammensetzung auf das Schmelzbadverhalten im Laserstrahltiefschweißprozess untersucht. Dabei wurden die Blechstärken so variiert, dass durchgeschweißte und nicht durchgeschweißte I-Naht-Verbindungen, geschweißt unter konstanten Schweißbedingungen, analysiert werden konnten. Die Schweißparameter und der Hilfsstoffeinsatz wurden dabei konstant gehalten, sodass Vergleichsanalysen der Schweißergebnisse möglich waren. Bei durchgeschweißten Stößen wurde die Schmelzbadoberfläche, aber auch die Schmelzbadunterseite per Hochgeschwindigkeitskamera inkl. Laserlichtfilter analysiert. Bei nicht durchgeschweißten Stößen wurde die Wirkung der verschiedenen Schnittkantenzustände auf das Einschweißverhalten und die Einbrandgeometrie an mehr als 100 Makroschliffen untersucht. Die Untersuchungen zeigten, dass die Art der Schnittkantenbehandlung nach dem Laserstrahlbrennschneidprozess materialbedingt zu unterschiedlichen Schnittkantenzuständen führt. Diese können in weiterer Folge die Schweißergebnisse stark beeinflussen. Auch bei mechanisch bearbeiteten Schweißnahtvorbereitungen wurden grundwerkstoffbedingte Unterschiede in der Einbrandform und im Erstarrungsgefüge nachgewiesen. Unbehandelte und somit schnittoxidbehaftete Schnittkanten bzw. auch Schweißnahtvorbereitungen mit manuell aufgetragenem SiO2 führen zu einer Stabilisierung der Dampfkapillare und erhöhen die Einschweißtiefe signifikant. Die positive Wirkung von Oxiden, welche direkt in der Schweißfuge dem Schmelzbad zugeführt werden, wurden mit den experimentellen Versuchen in dieser Arbeit erstmals nachgewiesen. Bei den gewählten Schweißparametersätzen stellen die Oxide in der Schweißfuge die dominierende Einflussmöglichkeit beim Laserstrahltiefschweißprozess dar. Vergleiche der mechanisch-technologischen Verbindungseigenschaften bei unterschiedlichen Schnittkantenzuständen und Schweißversuche mit unterschiedlichen Schutzgaszusammensetzungen zeigten die Auswirkungen der verschiedenen Fugenvorbereitungen auf die Schweißergebnisse. Durch die Kombination der bisherigen Erkenntnisse aus der Forschung mit den neu gewonnenen Erkenntnissen aus dieser Arbeit, konnte ein ganzheitliches Erklärungsmodell aufgestellt werden, das die Einflüsse der Grundmaterialzusammensetzung entlang der Prozesskette beschreibt und die materialabhängigen Unterschiede der Schweißergebnisse aus dem Laserstrahltiefschweißprozess nachvollziehbar macht. Die Erkenntnisse dieser Arbeit ermöglichen ein erhöhtes Prozessverständnis und zeigen neue Möglichkeiten zur Effizienzsteigerung in der Blechverarbeitungsprozesskette mit Lasertechnologien.:1 Einleitung 2 Zielsetzung 3 Stand der Technik 4 Experimentelles 5 Ergebnisse der experimentellen Untersuchungen 6 Zusammenfassung und Diskussion der Ergebnisse 7 Schlussfolgerungen und Ausblick / In the industrial series processing of high-strength fine grain steels, it was found that different steels of the same strength class can lead to different welding results by the laser beam keyhole welding process. The material-related influences on the molten pool behavior have not yet been investigated in any known research. This research work extends the state of knowledge with new findings from extensive material analysis and welding tests. This new findings made it possible to describe a holistic explanatory model of the material-related influences in the laser beam keyhole welding of high-strength fine grain steels. On the one hand, this work focused on the analysis of the chemical composition of the base materials and the effects of the alloying elements on the weld preparation in combination with the laser cutting process. On the other hand, the effect of the chemical base material composition on the melt pool behavior during laser keyhole welding process was specifically investigated. The welding parameters and the use of filler material were kept constant so that comparative analysis of the welding results was possible. The sheet thicknesses were varied so that full penetration and partly penetration I-seam-butt-welds could be analyzed. While welding full penetration welds, the surface of the molten pool as well as the root of the melt pool was analyzed by a high-speed camera equipped with laser light filter. For the partly penetration welds, the effect of the different cutting edge conditions on the penetration depth and the weld penetration geometry was investigated on more than 100 macro sections. The investigations have shown that the type of cut edge treatment after the laser beam cutting process leads to different cutting edge conditions depending on the material. These different conditions can subsequently strongly influence the welding results. Base-material-related differences in the penetration shape and in the solidification structure were detected in the cross sections even on seams welded on mechanically processed edge preparations. After laser beam cutting, untreated and thus cut-oxide-containing cut edges lead to a stabilization of the keyhole and increase the penetration depth significantly. This effect could also be observed with manually applied SiO2 on the mechanically processed edge preparations before welding. The positive effects of oxides, which are existing directly in the weld preparation groove, were first detected with the experimental investigations during this work. With regard to the selected welding parameter sets, the oxides that are directly on the weld preparation edges are the dominant influence option in the laser beam keyhole welding process. Comparisons of the mechanical-technological joint properties at different cutting edge conditions and welding tests with different protective gas compositions showed the impacts of various joint preparations on the final welding results. By combining previous experience with the results of this work, a holistic explanatory model was developed, which describes the influence of the base material composition along the process chain and makes the material-dependent differences of the welding results of the laser beam keyhole welding process comprehensible. The findings of this work enable a better understanding of the process and show new possibilities for increasing efficiency in the concerned sheet metal processing chain with laser technologies.:1 Einleitung 2 Zielsetzung 3 Stand der Technik 4 Experimentelles 5 Ergebnisse der experimentellen Untersuchungen 6 Zusammenfassung und Diskussion der Ergebnisse 7 Schlussfolgerungen und Ausblick

Page generated in 0.0514 seconds