• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural diagenetic attributes of the late Cretaceous Williams fork sandstones with implications for petrophysical interpretation and fracture prediction, Piceance Basin, Colorado

Ozkan, Aysen, 1974- 17 September 2010 (has links)
Diagenetic and structural aspects of tight gas sandstones must be addressed concurrently in order to fully understand low-permeability sandstones and to better predict their reservoir quality attributes that arise from a combination of pore-scale and fracture distribution characteristics. This dissertation focuses on aspects of rock evolution that are germane to concurrent structural and diagenetic evolution, such as loading and thermal history, rock mechanical property evolution, and fracture timing. I tested the hypothesis that the cement precipitation step, governed by thermal exposure and grain surface attributes, governs how sandstone attributes evolve using observations from the Late Cretaceous Williams Fork sandstones from the Piceance Basin, Colorado. My research shows that essential information for predicting and understanding fracture patterns in sandstone can be obtained by unraveling cement precipitation (diagenetic) history. Fractures depend on the mechanical properties existing during fracture growth. I show that key rock mechanical properties (subcritical crack index, Young's modulus and Poisson's ratio), petrophysical behavior, and reservoir quality depend in a systematic way on time-temperature history and the intrinsic grain surface attributes of these sandstones. I classified the Williams Fork lithofacies petrographically and correlated those with log responses to create a model that can be used to predict reservoir quality and diagenesis directly from well logs. I determined rock mechanical characteristics by measuring the subcritical crack index (SCI), a mechanical property that influences fracture distribution characteristics, and by examining log-derived bulk mechanical properties. To quantify the influence of quartz cementation on the SCI and to determine the range of SCI values for sandstone of given framework composition at different diagenetic stages, I measured SCI on Williams Fork core samples and their outcrop equivalents. Diagenetic modeling is applied to determine the sandstone characteristics during fracturing. / text

Page generated in 0.0767 seconds