Spelling suggestions: "subject:"datent epaces"" "subject:"datent espaces""
1 |
Space Adaptation Techniques for Preference Oriented Skyline ProcessingJanuary 2014 (has links)
abstract: Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards each attribute and hence "one size fits all" methodology might not satisfy all the users. True user satisfaction can be obtained only when the skyline is tailored specifically for each user based on his preferences.
This research investigates the problem of preference aware skyline processing which consists of inferring the preferences of users and computing a skyline specific to that user, taking into account his preferences. This research proposes a model that transforms the data from a given space to a user preferential space where each attribute represents the preference of the user. This study proposes two techniques "Preferential Skyline Processing" and "Latent Skyline Processing" to efficiently compute preference aware skylines in the user preferential space. Finally, through extensive experiments and performance analysis the correctness of the recommendations and the algorithm's ability to outperform the naïve ones is confirmed. / Dissertation/Thesis / Masters Thesis Computer Science 2014
|
2 |
Structured Disentangling Networks for Learning Deformation Invariant Latent SpacesJanuary 2019 (has links)
abstract: Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of variations. While this is generally a hard problem because of the non-existence of analytical expressions to capture these variations, there are certain factors like geometric
transforms that can be expressed analytically. Furthermore, in existing frameworks, the disentangled values are also not interpretable. The focus of this work is to disentangle these geometric factors of variations (which turn out to be nuisance factors for many applications) from the semantic content of the signal in an interpretable manner which in turn makes the features more discriminative. Experiments are designed to show the modularity of the approach with other disentangling strategies as well as on multiple one-dimensional (1D) and two-dimensional (2D) datasets, clearly indicating the efficacy of the proposed approach. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
|
Page generated in 0.0755 seconds