Spelling suggestions: "subject:"1ateral apread"" "subject:"1ateral ipread""
1 |
Analysis of Applied Modifications to a Cone Penetration Test-based Lateral Spread Displacement Prediction ModelCorob, Alexander Edward 16 December 2019 (has links)
This study set out to examine the effectiveness and reliability of six modifications to the Zhang et al. (2004) CPT-based lateral spread model. A regression analysis, distribution charts, and a discriminant analysis are performed to determine how effective the modifications are on the model. From the comparisons and statistical analysis performed in this study, application of these modifications reduces over-predictions from strain-based prediction methods. Unfortunately, the tendency to under-predict displacements on average is also increased.
|
2 |
Evaluation of Empirical Prediction Methods for Liquefaction-Induced Lateral Spread from the 2010 Maule, Chile, M<sub>w</sub> 8.8 Earthquake in Port CoronelWilliams, Nicole D. 01 July 2015 (has links)
Over the past several decades, empirical formulas have been developed and improved to predict liquefaction and lateral spread based on a database of case histories from observed earthquakes, such as Youd et al. (2002) and Rauch and Martin (2000). The 2010 Maule Chile earthquake is unique first of all because it is recent and was not used to develop recent liquefaction and lateral spread evaluation methods, and therefore can be reasonably used to evaluate the effectiveness of such equations. Additionally, the 8.8 magnitude megathrust event fills a significant gap in the databases used to develop these empirical formulas, which tends to under represent large magnitude earthquakes and events which occur along subduction zones. Use of case histories from this event will therefore effectively test the robustness and accuracy of these methods.As a part of this comparison, data will be collected from two piers in Port Coronel, Chile: Lo Rojas or Fisherman's Pier, and el Carbonero. Lo Rojas is a municipally owned pier which failed in the 2010 earthquake. Dr. Kyle Rollins gathered detailed engineering survey data defining lateral spread displacements along this pier in a reconnaissance visit with other GEER investigators after the earthquake. El Carbonero was under construction during the earthquake, but no known lateral displacements were observed. Collaboration with local universities and personnel contributed a great deal of knowledge about the soil profile. In early April 2014, collection of SPT and CPT data began in strategic locations to fill gaps of understanding about the stratigraphy near the two piers. Additional testing will provide necessary information to carry out predictions of displacements using current empirical models, which can then be compared with observed displacements collected after the earthquake. Collected data will also be complied, and this alone will provide useful information as it represents a unique case history for future evaluation.The goals of this study are therefore: (1) Collect data for two piers (Lo Rojas and el Carbonero) in Port Coronel, Chile to provide a useful case history of lateral displacements observed; (2) Conduct a liquefaction and lateral spread analysis to predict displacement of the two piers in question, considering lateral spread and slope stability; (3) Compare predicted values with observed displacements and draw conclusions on the predictive capabilities of analyzed empirical equations for similar earthquakes (4) Make recommendations to improve when possible.
|
3 |
Evaluation of Current Empirical Methods for Predicting Lateral Spread-Induced Ground Deformations for Large Magnitude Earthquakes Using Maule Chile 2010 Case HistoriesTryon, Ginger Emily 01 December 2014 (has links)
Improving seismic hazard analysis is an important part of building safer structures and protecting lives. Since large magnitude earthquakes are rarer than other earthquakes, it is harder to model seismic hazards such as lateral spread displacements for these events. Engineers are often required to extrapolate current lateral spreading models when designing utilities, bridges, and piers to withstand the ground displacements caused by earthquakes with magnitudes larger than 8.0. This study uses three case histories from the Maule Chile 2010 earthquake (Mw =8.8) to develop recommendations on which models are most accurate for large earthquake events and how to improve the accuracy of the models. Six empirical models commonly used in engineering practice are compared. The model that best matches the Maule Chile case histories uses local attenuation relationships to make it easier to apply the model to any seismic region. Models that use lab data from cyclic shear tests over predict displacements but using a strain-reduction factor with depth significantly improved the accuracy of the results. Site-to-source distances can vary greatly between geographic seismic and faulting mechanisms. For this reason, models that depend on an internal source-to-site distance show less promise with large subduction zone earthquakes throughout the world. Models with site-to-source distances are most accurate in the western United States and Japan because the case histories for these models came from those countries.
|
4 |
Development of a Simplified Analysis Approach for Predicting Pile Deflections of Piers Subjected to Lateral Spread Displacements and Application to a Pier Damaged During the 2010 Maule, Chile, M8.8 EarthquakePalmer, Logan Matthew 01 December 2018 (has links)
The 2010, moment magnitude 8.8 earthquake that occurred near Maule, Chile caused major damages to several piers in the Port of Coronel located approximately 160 kilometers (100 miles) to the South of the earthquake epicenter. One of the piers, the North Pier, experienced significant lateral spreading that was caused from liquefaction of the soils at the approach zone of the pier. Damages from lateral spreading and liquefaction effects consisted of sheet pile welding ruptures of the cross-support beams, stiffener buckling, pile displacements, pile rotations, and pier deck displacement. Researchers analyzed the North Pier after the earthquake and documented in detail the damage caused by lateral spread displacements. This study introduces a simplified performance-based procedure called the "Simplified Modeling Procedure" that is used for the analysis of piles supporting a pier that are exposed to lateral spread displacements. The procedure uses the software LPILE, a common program for analyzing a single pile under lateral loading conditions, to evaluate a more complex multi-pile pier design. Instead of analyzing each of the piles in a given pier individually, the procedure utilizes what is known as a "Super Pile" approach to combine several piles into a single representative pile during the analysis. To ensure displacement compatibility between each "Super Pile" in the analysis, the "Super Piles" are assumed to be fully connected at the top of each "Super Pile" to the pier deck. The Simplified Modeling Procedure is developed and tested using the case study history of the North Pier from the Port of Coronel during the 2010 Maule earthquake. The Simplified Modeling Procedure incorporates p-y springs with a lateral push-over analysis. This approach allows the analysis to be performed in a matter of seconds and allows the user to more easily draw the needed correlations between the rows of piles. This procedure helps identify that different rows of piles either contribute to the movement of the pier or contribute to the bracing of the pier. The procedure ultimately predicts the anticipated pier deck deflection by determining when all the pile rows and their respective shear forces are in equilibrium. The Simplified Modeling Procedure predicted that the North Pier experienced deflections between approximately 0.31 meters (1.01 feet) and 0.38 meters (1.26 feet). The predicted deflections and rotations determined using the procedure were determined to be a relatively close representation of the observations made during the post-earthquake reconnaissance observations.
|
5 |
A Simplified Performance-Based Procedure for the Prediction of Lateral Spread DisplacementsEkstrom, Levi Thomas 01 June 2015 (has links) (PDF)
Characterization of the seismic hazard and ground-failure hazard of a site using traditional empirical lateral spread displacement models requires consideration of uncertainties in seismic loading, site conditions, and model prediction. Researchers have developed performance-based design methods to simultaneously account for these sources of uncertainty through the incorporation of a probabilistic analytical framework. While these methods can effectively handle the various sources of uncertainty associated with empirical lateral spread displacement prediction, they can be difficult for engineers to perform in a practical manner without the use of specialized numerical tools. To make the benefits of a performance-based approach accessible to a broader audience of geotechnical engineers, a simplified performance-based procedure is introduced in this paper. This map-based procedure utilizes a reference soil profile to provide hazard-targeted reference displacements across a geographic area. Equations are provided for engineers to correct those reference displacements for site-specific soil conditions and surface geometry to produce site-specific, hazard-targeted estimates of lateral spread displacement. The simplified performance-based procedure is validated through a comparative study assessing probabilistic lateral spread displacements across several cities in the United States. Results show that the simplified procedure closely approximates the results from the full performance-based model for all sites. Comparison with deterministic analyses are presented, and the place for both in engineering practice are discussed.
|
6 |
A Performance-Based Model for the Computation of Kinematic Pile Response Due to Lateral Spreading and Its Application on Select Bridges Damaged During the M7.6 Earthquake in the Limon Province, Costa RicaFranke, Kevin W. 13 December 2011 (has links) (PDF)
Lateral spread is a seismic hazard associated with soil liquefaction in which permanent deformations are developed within the soil profile due to cyclic mobility. Lateral spread has historically been one of the largest causes of earthquake-related damage to infrastructure. One of the infrastructure components most at risk from lateral spread is that of deep foundations. Because performance-based engineering is increasingly becoming adopted in earthquake engineering practice, it would be beneficial for engineers and researchers to have a performance-based methodology for computing pile performance during a lateral spread event. This study utilizes the probabilistic performance-based framework developed by the Pacific Earthquake Engineering Research Center to develop a methodology for computing probabilistic estimates of kinematic pile response. The methodology combines procedures familiar to most practicing engineers such as probabilistic seismic hazard analysis, empirical compution of lateral spread displacement, and kinematic pile response using p-y soil spring models (i.e. LPILE). The performance-based kinematic pile response model is applied to a series of lateral spread case histories from the earthquake that struck the Limon province of Costa Rica on April 22, 1991. The M7.6 earthquake killed 53 people, injured another 193 people, and disrupted an estimated 30-percent of the highway pavement and railways in the region due to fissures, scarps, and soil settlements resulting from liquefaction. Significant lateral spread was observed at bridge sites throughout the eastern part of Costa Rica near Limon, and the observed structural damage ranged from moderate to severe. This study identified five such bridges where damage due to lateral spread was observed following the earthquake. A geotechnical investigation is performed at each of these five bridges in an attempt to back-analyze the soil conditions leading to the liquefaction and lateral spread observed during the 1991 earthquake, and each of the five resulting case histories is developed and summarized. The results of this study should make a valuable contribution to the field of earthquake hazard reduction because they will introduce a procedure which will allow engineers and owners to objectively evaluate the performance of their deep foundation systems exposed to kinematic lateral spread loads corresponding to a given level of risk.
|
7 |
Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Lateral Spread Displacements Using the Cone Penetration TestCoutu, Tyler Blaine 01 October 2017 (has links)
Liquefaction-induced lateral spread displacements cause severe damage to infrastructure, resulting in large economic losses in affected regions. Predicting lateral spread displacements is an important aspect in any seismic analysis and design, and many different methods have been developed to accurately estimate these displacements. However, the inherent uncertainty in predicting seismic events, including the extent of liquefaction and its effects, makes it difficult to accurately estimate lateral spread displacements. Current conventional methods of predicting lateral spread displacements do not completely account for uncertainty, unlike a performance-based earthquake engineering (PBEE) approach that accounts for the all inherent uncertainty in seismic design. The PBEE approach incorporates complex probability theory throughout all aspects of estimating liquefaction-induced lateral spread displacements. A new fully-probabilistic PBEE method, based on results from the cone penetration test (CPT), was created for estimating lateral spread displacements using two different liquefaction triggering procedures. To accommodate the complexity of all probabilistic calculations, a new seismic hazard analysis tool, CPTLiquefY, was developed. Calculated lateral spread displacements using the new fully-probabilistic method were compared to estimated displacements using conventional methods. These comparisons were performed across 20 different CPT profiles and 10 cities of varying seismicity. The results of this comparison show that the conventional procedures of estimating lateral spread displacements are sufficient for areas of low seismicity and for lower return periods. However, by not accounting for all uncertainties, the conventional methods under-predict lateral spread displacements in areas of higher seismicity. This is cause for concern as it indicates that engineers in industry using the conventional methods are likely under-designing structures to resist lateral spread displacements for larger seismic events.
|
8 |
Development of a Performance-Based Procedure for Assessment of Liquefaction-Induced Lateral Spread Displacements Using the Cone Penetration TestCoutu, Tyler Blaine 01 October 2017 (has links)
Liquefaction-induced lateral spread displacements cause severe damage to infrastructure, resulting in large economic losses in affected regions. Predicting lateral spread displacements is an important aspect in any seismic analysis and design, and many different methods have been developed to accurately estimate these displacements. However, the inherent uncertainty in predicting seismic events, including the extent of liquefaction and its effects, makes it difficult to accurately estimate lateral spread displacements. Current conventional methods of predicting lateral spread displacements do not completely account for uncertainty, unlike a performance-based earthquake engineering (PBEE) approach that accounts for the all inherent uncertainty in seismic design. The PBEE approach incorporates complex probability theory throughout all aspects of estimating liquefaction-induced lateral spread displacements. A new fully-probabilistic PBEE method, based on results from the cone penetration test (CPT), was created for estimating lateral spread displacements using two different liquefaction triggering procedures. To accommodate the complexity of all probabilistic calculations, a new seismic hazard analysis tool, CPTLiquefY, was developed. Calculated lateral spread displacements using the new fully-probabilistic method were compared to estimated displacements using conventional methods. These comparisons were performed across 20 different CPT profiles and 10 cities of varying seismicity. The results of this comparison show that the conventional procedures of estimating lateral spread displacements are sufficient for areas of low seismicity and for lower return periods. However, by not accounting for all uncertainties, the conventional methods under-predict lateral spread displacements in areas of higher seismicity. This is cause for concern as it indicates that engineers in industry using the conventional methods are likely under-designing structures to resist lateral spread displacements for larger seismic events.
|
9 |
An Investigation of the Origin of Rock City and Cause of Piping Problems at Mountain Lake, Giles County, VirginiaAtallah, Nidal Walid 24 October 2013 (has links)
No description available.
|
Page generated in 0.0563 seconds