Spelling suggestions: "subject:"1ateral distortion"" "subject:"1ateral distortions""
1 |
Sobre o comportamento estrutural de terças de aço considerando a interação com as telhas / On the structural behaviour of steel purlins under wind uplift considering the purlin-sheeting combinationBaságlia, Cilmar Donizeti 16 September 2004 (has links)
Nos últimos anos tem sido observada uma significativa redução do uso das telhas pesadas nas edificações industriais, como as telhas de fibrocimento, por exemplo, e a preferência por telhas mais leves e que permitem maior racionalização da construção, como as telhas metálicas (aço zincado e alumínio). Assim, a fixação por meio de ganchos foi naturalmente sendo substituída por parafusos auto-atarraxantes, permitindo uma elevada eficiência estrutural da interação terça-telha, portanto, as terças que eram tratadas como elementos estruturais independentes passaram a ser projetadas com base no comportamento conjunto com as telhas. Diante disso, este trabalho apresenta um estudo sobre o comportamento estrutural de terças de aço considerando a interação terça-telha, com ênfase na distorção lateral. Para tanto, são analisados os modelos teóricos encontrados na literatura e os procedimentos normativos, bem como são desenvolvidas análises numéricas de sistemas representativos de coberturas, via método dos elementos finitos (MEF), que incluem os efeitos da não-linearidade física e geométrica. Através destes modelos numéricos, validados por resultados experimentais de ensaios realizados na EESC-USP, é realizada uma avaliação da influência da rigidez à flexão da terça, da conexão telha-terça, do tipo de seção da terça e da presença e posicionamento de tirantes de travamento lateral das terças. Neste contexto, concluiu-se que as telhas, desde que fixadas adequadamente as terças, contribuem para a estabilidade lateral, impondo mecanismos de falha que diferem substancialmente dos mecanismos clássicos da teoria da estabilidade elástica. / Recent years have seen a significant reduction in the use of heavy sheeting such as fiber cement roof sheets in industrial buildings, and an increasing preference for lighter sheeting that allows for greater rationalization of the construction, such as metallic sheeting (zinc-coated and aluminum). Thus, fixing by means of hooks was naturally replaced by screws, allowing for high structural efficiency of the purlin-sheeting combination, and purlins, which heretofore had been treated as independent structural elements, began to be designed based on their combined behavior with sheeting. This paper discusses the findings of a comprehensive on the structural behaviour of steel purlins under wind uplift considering the purlin-sheeting combination, with emphasis on lateral distortional. To this end, an analysis is made of the theoretical models available in the literature and in standard procedures, and systems representative of roofs are analyzed numerically via the finite elements method (FEM), including the effects of physical and geometrical nonlinearity. Based on these numerical models, which are validated by the experimental results of tests conducted at School of Engineering of São Carlos - University of São Paulo, an evaluation is made of the influence of the purlin\'s flexural stiffness, the sheeting-purlin connection, the type of purlin section (channel and Z-sections), and the number of rows of bridging (bracing). In this context, it was concluded that sheeting, provided it is properly fixed to the purlins, contributes toward lateral stability, imposing failure modes that differ considerably from the classic mechanisms of the theory of elastic stability.
|
2 |
Sobre o comportamento estrutural de terças de aço considerando a interação com as telhas / On the structural behaviour of steel purlins under wind uplift considering the purlin-sheeting combinationCilmar Donizeti Baságlia 16 September 2004 (has links)
Nos últimos anos tem sido observada uma significativa redução do uso das telhas pesadas nas edificações industriais, como as telhas de fibrocimento, por exemplo, e a preferência por telhas mais leves e que permitem maior racionalização da construção, como as telhas metálicas (aço zincado e alumínio). Assim, a fixação por meio de ganchos foi naturalmente sendo substituída por parafusos auto-atarraxantes, permitindo uma elevada eficiência estrutural da interação terça-telha, portanto, as terças que eram tratadas como elementos estruturais independentes passaram a ser projetadas com base no comportamento conjunto com as telhas. Diante disso, este trabalho apresenta um estudo sobre o comportamento estrutural de terças de aço considerando a interação terça-telha, com ênfase na distorção lateral. Para tanto, são analisados os modelos teóricos encontrados na literatura e os procedimentos normativos, bem como são desenvolvidas análises numéricas de sistemas representativos de coberturas, via método dos elementos finitos (MEF), que incluem os efeitos da não-linearidade física e geométrica. Através destes modelos numéricos, validados por resultados experimentais de ensaios realizados na EESC-USP, é realizada uma avaliação da influência da rigidez à flexão da terça, da conexão telha-terça, do tipo de seção da terça e da presença e posicionamento de tirantes de travamento lateral das terças. Neste contexto, concluiu-se que as telhas, desde que fixadas adequadamente as terças, contribuem para a estabilidade lateral, impondo mecanismos de falha que diferem substancialmente dos mecanismos clássicos da teoria da estabilidade elástica. / Recent years have seen a significant reduction in the use of heavy sheeting such as fiber cement roof sheets in industrial buildings, and an increasing preference for lighter sheeting that allows for greater rationalization of the construction, such as metallic sheeting (zinc-coated and aluminum). Thus, fixing by means of hooks was naturally replaced by screws, allowing for high structural efficiency of the purlin-sheeting combination, and purlins, which heretofore had been treated as independent structural elements, began to be designed based on their combined behavior with sheeting. This paper discusses the findings of a comprehensive on the structural behaviour of steel purlins under wind uplift considering the purlin-sheeting combination, with emphasis on lateral distortional. To this end, an analysis is made of the theoretical models available in the literature and in standard procedures, and systems representative of roofs are analyzed numerically via the finite elements method (FEM), including the effects of physical and geometrical nonlinearity. Based on these numerical models, which are validated by the experimental results of tests conducted at School of Engineering of São Carlos - University of São Paulo, an evaluation is made of the influence of the purlin\'s flexural stiffness, the sheeting-purlin connection, the type of purlin section (channel and Z-sections), and the number of rows of bridging (bracing). In this context, it was concluded that sheeting, provided it is properly fixed to the purlins, contributes toward lateral stability, imposing failure modes that differ considerably from the classic mechanisms of the theory of elastic stability.
|
3 |
Flexural behaviour and design of the new LiteSteel beamsKurniawan, Cyrilus Winatama January 2007 (has links)
The flexural capacity of the new hollow flange steel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research based on finite element analysis and testing has developed design rules for the member capacity of LiteSteel beams subject to this unique lateral distortional buckling. These design rules are limited to a uniform bending moment distribution. However, uniform bending moment conditions rarely exist in practice despite being considered as the worst case due to uniform yielding across the span. Loading position or load height is also known to have significant effects on the lateral buckling strength of beams. Therefore it is important to include the effects of these loading conditions in the assessment of LSB member capacities. Many steel design codes have adopted equivalent uniform moment distribution and load height factors for this purpose. But they were derived mostly based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. In contrast LSBs are made of high strength steel and have a unique crosssection with specific residual stresses and geometrical imperfections along with a unique lateral distortional buckling mode. The moment distribution and load height effects for LSBs, and the suitability of the current steel design code methods to accommodate these effects for LSBs are not yet known. The research study presented in this thesis was therefore undertaken to investigate the effects of nonuniform moment distribution and load height on the lateral buckling strength of simply supported and cantilever LSBs. Finite element analyses of LSBs subject to lateral buckling formed the main component of this study. As the first step the original finite element model used to develop the current LSB design rules for uniform moment was improved to eliminate some of the modelling inaccuracies. The modified finite element model was validated using the elastic buckling analysis results from well established finite strip analysis programs. It was used to review the current LSB design curve for uniform moment distribution, based on which appropriate recommendations were made. The modified finite element model was further modified to simulate various loading and support configurations and used to investigate the effects of many commonly used moment distributions and load height for both simply supported and cantilever LSBs. The results were compared with the predictions based on the current steel code design rules. Based on these comparisons, appropriate recommendations were made on the suitability of the current steel code design methods. New design recommendations were made for LSBs subjected to non-uniform moment distributions and varying load positions. A number of LSB experiments was also undertaken to confirm the results of finite element analysis study. In summary the research reported in this thesis has developed an improved finite element model that can be used to investigate the buckling behaviour of LSBs for the purpose of developing design rules. It has increased the understanding and knowledge of simply supported and cantilever LSBs subject to non-uniform moment distributions and load height effects. Finally it has proposed suitable design rules for LSBs in the form of equations and factors within the current steel code design provisions. All of these advances have thus further enhanced the economical and safe design of LSBs.
|
Page generated in 0.1262 seconds