• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geostatic stress state evaluation by directional shear wave velocities, with application towards geocharacterization at Aiken, SC

Ku, Taeseo 09 November 2012 (has links)
Evaluations of stress history and the geostatic state of stress of soils are ascertained on the basis of field geophysical measurements that provide paired complementary types of shear waves. It is well-established that multiple types of shear waves occur in the ground due to their directional and polarization properties. The shear wave velocity (Vs) provides the magnitude of small strain stiffness (G0) which depends on effective stress, void ratio, stress history, and other factors (cementation, age, saturation). Herein, this study examines a hierarchy of shear wave modes with different directions of propagation and particle motion from in-situ geophysical tests (HH, VH, and HV) and laboratory bender element data. A special compiled database from well-documented worldwide sites is assembled where full profiles of stress state, stress history, and several paired modes of Vs profiles have been obtained from crosshole tests (CHT), downhole tests (DHT), and rotary crosshole (RCHT). Reference profiles of the lateral stress coefficient (K0) are available from direct in-situ measurements (self-boring pressuremeter, hydrofracture, and push-in spade cells). Stress history is documented in terms of yield stress ratio (YSR) from consolidation testing and careful engineering geology studies. A methodology is developed that relates both the YSR and K0 to stiffness ratios obtained from directional shear wave velocities. In further efforts, means to extract reliable shear wave profiles from continuous downhole testing via a new GT autosource and seismic piezocone testing are outlined and applied to results from three test sites in Windsor/VA, Norfolk/VA, and Richmond/BC. A driving impetus to this research involves the geologic conditions at the US Dept. of Energy's Savannah River Site (SRS) in South Carolina. Here, the overburden soils in the upper 60 m depths consist of very old Miocene and Eocene sediments, primarily layered deposits of sands, clayey sands, silty sands, and interbedded clays which exhibit an apparent and unusual stress history profile. Special geologic conditions include the dissolutioning of old calcareous sediments (Santee Formation) at depths of 40 to 50 m below grade, similar to karstic limestone deposits. As a consequence, caves, voids, and infilled soft soil zones occur within the soil matrix at these elevations, probably resulting in localized collapse of the overlying soil column. Based on conventional laboratory and in-situ test data conducted during geotechnical investigations at SRS, available interpretative relationships for assessing the soil stress history and geostatic stress states show scattered and inconsistent results. Complications abound in the systematic assessments of these geomaterials due to effects of very old ageing, cementation, desiccation, and diagenesis, as evidenced by unusual in-situ shear wave velocity profiles that decrease in magnitude with depth, as measured by CHT and DHT. Based on the findings of this study, it is recommended that a new set of shear wave velocity measurements be made at SRS to obtain HH waves (and complementary VH waves) needed for an independent assessment of YSR in the upper soil column.

Page generated in 0.123 seconds