• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 10
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Critical Sets in Latin Squares and Associated Structures

Bean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n x n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n2-n. In Chapter 4, it is shown that lcs(n)<=n2-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders mX2^alpha (m odd, alpha>=2) and mX2^alpha+1 (m odd, alpha>=2 and alpha not equal to 3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n2 divided by 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
22

Construction of Minimal Partially Replicated Orthogonal Main-Effect Plans with 3 Factors

朱正中, Chu, Cheng-Chung Unknown Date (has links)
正交主效應計畫(Orthogonal main-effect plans)因可無相關地估計主效應,故常被應用於一般工業上作為篩選因子之用。然而,實驗通常費時耗財。因此,如何設計一個較經濟且有效的計劃是很重要的。回顧過去相關的研究,Jacroux (1992)提供了最小正交主效應計劃的充份條件及正交主效應計畫之最少實驗次數表(Jacroux 1992),張純明(1998)針對此表提出修正與補充。在此,我們再次的補足此表。 正交主效應計畫中,如有重複實驗點,則純誤差可被估計,且據此檢定模型之適合度。Jacroux (1993)及張純明(1998)皆曾提出具最多部份重複之正交主效應計畫(Partially replicated orthogonal main-effect plans)。在此,我們討論所有三因子部份重複正交主效應計畫中,可能重複之最大次數,且具體提出建構此最大部份重複之最小正交主效應計畫之方法。 / Orthogonal main-effect plans (OMEP's), being able to estimate the main effects without correlation, are often employed in industrial situations for screening purpose. But experiments are expensive and time consuming. When an economical and efficient design is desired, a minimal orthogonal main-effect plans is a good choice. Jacroux (1992) derived a sufficient condition for OEMP's to have minimal number of runs and provided a table of minimal OMEP run numbers. Chang (1998) corrected and supplemented the table. In this paper, we try to improve the table to its perfection. A minimal OMEP with replicated runs is appreciated even more since then the pure error can be estimated and the goodness-of-fit of the model can be tested. Jacroux (1993) and Chang (1998) gave some partially replicated orthogonal main-effect plans (PROMEP's) with maximal number of replicated points. Here, we discuss minimal PROMEP's with 3 factors in detail. Methods of constructing minimal PROMEP's with replicated runs are provided, and the number of replicated runs are maximal for most cases.
23

Network Coding for Wirless Relaying and Wireline Networks

Vijayvaradharaj, T M January 2014 (has links) (PDF)
Network coding has emerged as an attractive alternative to routing because of the through put improvement it provides by reducing the number of channel uses. In a wireless scenario, in addition, further improvement can be obtained through Physical layer Network Coding (PNC), a technique in which nodes are allowed to transmit simultaneously, instead of transmitting in orthogonal slots. In this thesis, the design and analysis of network coding schemes are considered, for wireless two-way relaying, multi-user Multiple Access Relay Channel (MARC) and wireline networks. In a wireless two-way relay channel with PNC, the simultaneous transmissions of user nodes result in Multiple Access Interference (MAI) at there lay node. The harmful effect of MAI is the presence of signal set dependent deep channel fade conditions, called singular fade states, under which the minimum distance of the effective constellation at the relay become zero. Adaptively changing the network coding map used at the relay according to channel conditions greatly reduces the impact of this MAI. In this work, we obtain these adaptive PNC maps, which are finite in number ,by completing partially filled Latin Squares and using graph vertex coloring. Having obtained the network coding maps, the set of all possible channel realizations is quantized into a finite number of regions, with a specific network coding map chosen in a particular region and such a quantization is obtained analytically for 2λ-PSK signal set. The performance of the adaptive PNC scheme for two-way relaying is analyzed and tight high SNR upper bounds are obtained for the average end-to-end symbol error probability, in terms of the average error probability of a point-to-point fading channel. The adaptive PNC scheme is generalized for two-way relaying with multiple antennas at the nodes. As an alternative to the adaptive PNC scheme for two-way relaying, a Distributed Space Time Coding (DSTC) scheme is proposed, which effectively re-moves the effect of singular fade states at the transmitting nodes itself without any Channel State Information at the Transmitter (CSIT), and without any need to change the PNC map as a function of channel fade conditions. It is shown that the singular fade states can be viewed equivalently as vector subspaces of C2, which are referred to as the singular fade subspaces. DSTC design criterion to minimize the number of singular fade subspaces and maximize the coding gain is formulated and explicit low decoding complexity DSTC designs are provided. For the K-user MARC, in which K source nodes want to transmit messages to a destination node D with the help of are lay node R, a new PNC scheme is proposed. Use of a many-to-one PNC map with conventional minimum squared Euclidean distance decoding at D, results in a loss of diversity order due to error propagation from the relay node. To counter this, we propose a novel low complexity decoder which offers the maximum diversity order of two. Next, we consider wire line networks and explore the connections between linear network coding, linear index coding and discrete polymatroids, which are the multi-set analogue of matroids. We define a discrete polymatroidal network and show that a fractional vector linear solution over a field Fq exists for a network if and only if the network is discrete polymatroidal with respect to a discrete polymatroid representable over Fq.An algorithm to construct networks starting from certain class of discrete polymatroids is provided. Every representation over Fq for the discrete polymatroid, results in a fractional vector linear solution over Fq for the constructed network. It is shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.

Page generated in 0.0718 seconds