• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • Tagged with
  • 33
  • 33
  • 33
  • 16
  • 15
  • 14
  • 14
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Towards a high performance parallel library to compute fluid flexible structures interactions

Nagar, Prateek 08 April 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / LBM-IB method is useful and popular simulation technique that is adopted ubiquitously to solve Fluid-Structure interaction problems in computational fluid dynamics. These problems are known for utilizing computing resources intensively while solving mathematical equations involved in simulations. Problems involving such interactions are omnipresent, therefore, it is eminent that a faster and accurate algorithm exists for solving these equations, to reproduce a real-life model of such complex analytical problems in a shorter time period. LBM-IB being inherently parallel, proves to be an ideal candidate for developing a parallel software. This research focuses on developing a parallel software library, LBM-IB based on the algorithm proposed by [1] which is first of its kind that utilizes the high performance computing abilities of supercomputers procurable today. An initial sequential version of LBM-IB is developed that is used as a benchmark for correctness and performance evaluation of shared memory parallel versions. Two shared memory parallel versions of LBM-IB have been developed using OpenMP and Pthread library respectively. The OpenMP version is able to scale well enough, as good as 83% speedup on multicore machines for <=8 cores. Based on the profiling and instrumentation done on this version, to improve the data-locality and increase the degree of parallelism, Pthread based data centric version is developed which is able to outperform the OpenMP version by 53% on manycore machines. A distributed version using the MPI interfaces on top of the cube based Pthread version has also been designed to be used by extreme scale distributed memory manycore systems.
32

Direct numerical simulation and a new 3-D discrete dynamical system for image-based complex flows using volumetric lattice Boltzmann method

Xiaoyu Zhang (18423768) 26 April 2024 (has links)
<p dir="ltr">The kinetic-based lattice Boltzmann method (LBM) is a specialized computational fluid dynamics (CFD) technique that resolves intricate flow phenomena at the mesoscale level. The LBM is particularly suited for large-scale parallel computing on Graphic Processing Units (GPU) and simulating multi-phase flows. By incorporating a volume fraction parameter, LBM becomes a volumetric lattice Boltzmann method (VLBM), leading to advantages such as easy handling of complex geometries with/without movement. These capabilities render VLBM an effective tool for modeling various complex flows. In this study, we investigated the computational modeling of complex flows using VLBM, focusing particularly on pulsatile flows, the transition to turbulent flows, and pore-scale porous media flows. Furthermore, a new discrete dynamical system (DDS) is derived and validated for potential integration into large eddy simulations (LES) aimed at enhancing modeling for turbulent and pulsatile flows. Pulsatile flows are prevalent in nature, engineering, and the human body. Understanding these flows is crucial in research areas such as biomedical engineering and cardiovascular studies. However, the characteristics of oscillatory, variability in Reynolds number (Re), and shear stress bring difficulties in the numerical modeling of pulsatile flows. To analyze and understand the shear stress variability in pulsatile flows, we first developed a unique computational method using VLBM to quantify four-dimensional (4-D) wall stresses in image-based pulsatile flows. The method is validated against analytical solutions and experimental data, showing good agreement. Additionally, an application study is presented for the non-invasive quantification of 4-D hemodynamics in human carotid and vertebral arteries. Secondly, the transition to turbulent flows is studied as it plays an important role in the understanding of pulsatile flows since the flow can shift from laminar to transient and then to turbulent within a single flow cycle. We conducted direct numerical simulations (DNS) using VLBM in a three-dimensional (3-D) pipe and investigated the flow at Re ranging from 226 to 14066 in the Lagrangian description. Results demonstrate good agreement with analytical solutions for laminar flows and with open data for turbulent flows. Key observations include the disappearance of parabolic velocity profiles when Re>2300, the fluctuation of turbulent kinetic energy (TKE) between laminar and turbulent states within the range 2300</p>
33

Mechanisms of axis-switching and saddle-back velocity profile in laminar and turbulent rectangular jets

Chen, Nan 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We numerically investigate the underlying physics of two peculiar phenomena, which are axis-switching and saddle-back velocity profile, in both laminar and turbulent rectangular jets using lattice Boltzmann method (LBM). Previously developed computation protocols based on single-relaxation-time (SRT) and multiple-relaxation-time (MRT) lattice Boltzmann equations are utilized to perform direct numerical simulation (DNS) and large eddy simulation (LES) respectively. In the first study, we systematically study the axis-switching behavior in low aspect-ratio (AR), defined as the ratio of width over height, laminar rectangular jets with <italic>AR=1</italic> (square jet), 1.5, 2, 2.5, and 3. Focuses are on various flow properties on transverse planes downstream to investigate the correlation between the streamwise velocity and secondary flow. Three distinct regions of jet development are identified in all the five jets. The <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching occur in characteristic decay (CD) region consecutively at the early and late stage. The half-width contour (HWC) reveals that <italic>45&deg</italic> axis-switching is mainly contributed by the corner effect, whereas the aspect-ratio (elliptic) feature affects the shape of the jet when <italic>45&deg</italic> axis-switching occurs. The close examinations of flow pattern and vorticity contour, as well as the correlation between streamwise velocity and vorticity, indicate that <italic>90&deg</italic> axis-switching results from boundary effect. Specific flow patterns for <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching reveal the mechanism of the two types of axis-switching respectively. In the second study we develop an algorithm to generate a turbulent velocity field for the boundary condition at jet inlet. The turbulent velocity field satisfies incompressible continuity equation with prescribed energy spectrum in wave space. Application study of the turbulent velocity profile is on two turbulent jets with <italic>Re=25900</italic>. In the jets with <italic>AR=1.5</italic>, axis-switching phenomenon driven by the turbulent inlet velocity is more profound and in better agreement with experimental examination over the laminar counterpart. Characteristic jet development driven by both laminar and turbulent inlet velocity profile in square jet (<italic>AR=1</italic>) is also examined. Overall agreement of selected jet features is good, while quantitative match for the turbulence intensity profiles is yet to be obtained in future study. In the third study, we analyze the saddle-back velocity profile phenomenon in turbulent rectangular jets with AR ranging from 2 to 6 driven by the developed turbulent inlet velocity profiles with different turbulence intensity (<italic>I</italic>). Saddle-back velocity profile is observed in all jets. It has been noted that the saddle-back's peak velocities are resulted from the local minimum mixing intensity. Peak-center difference <italic>&Delta<sub>pc</sub></italic> and profound saddle-back (PSB) range are defined to quantify the saddle-back level and the effects of AR and <italic>I</italic> on saddle-back profile. It is found that saddle-back is more profound with larger AR or slimmer rectangular jets, while its relation with <italic>I</italic> is to be further determined.

Page generated in 0.0508 seconds