• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 5
  • Tagged with
  • 33
  • 33
  • 33
  • 16
  • 15
  • 14
  • 14
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterisation of porous media using the lattice Boltzmann method

Jones, Bruce January 2013 (has links)
No description available.
12

Accuracy and Enhancement of the Lattice Boltzmann Method for Application to a Cell-Polymer Bioreactor System

Deladisma, Marnico David 11 April 2006 (has links)
Articular cartilage has a limited ability to heal due to its avascular, aneural, and alymphatic nature. Currently, there is a need for alternative therapies for diseases that affect articular cartilage such as osteoarthritis. Recently, it has been shown that tissue constructs, which resemble cartilage in structure and function, can be cultured in vitro in a cell-polymer bioreactor system. Bioreactors provide a three dimensional environment that promotes cell proliferation and matrix production. The primary objective of this study is to accurately simulate fluid mechanics using the lattice Boltzmann method for application to a cell-polymer bioreactor system. Lattice Boltzmann (LB) is a flexible computation technique that will allow for the simulation of a moving construct under various bioreactor conditions. The method predicts macroscopic hydrodynamics by considering virtual particle interactions. Derived from the Lattice Gas Automata, lattice Boltzmann allows for mass transfer, complex geometries, and particle dynamics. A primary goal is to characterize the accuracy of the LB implementation and eventually the shear stresses felt by a tissue construct in this dynamic environment. This information is important since recent studies show that chondrocytic function may depend on the mechanical stimuli produced by fluid flow. Hence, shear stress may affect the final mechanical properties of tissue constructs. In this study, numerical simulations are done first in 2D and then extended to 3D to test the LB implementation. Simulations of the rotating wall vessel (RWV) bioreactor are then undertaken. The results are benchmarked against computations done with a commercial CFD package, FLUENT, and compared with analytic solutions and experimental data.
13

Comparison of the hybrid and thermal lattice-Boltzmann methods

Olander, Jonathan 24 August 2009 (has links)
This thesis deals with the lattice-Boltzmann method (LBM) in combination with other methods to solve thermal flow problems. The three primary, current approaches for thermal lattice-Boltzmann method (TLBM) will be introduced. The three approaches are the multispeed approach by McNamara and Alder , the passive scalar approach by Shan, and the thermal distribution model proposed by He et al. Shi et al. simplified the thermal distribution model for incompressible thermal flows. The model proposed by Shi et al. was simulated and compared to a hybrid LBM and energy equation model proposed by Khiabani et al. The thermal lattice-Boltzmann method will be compared to the temperature fields generated by the energy equation of the hybrid method. To determine which method is better suited from computer simulations the two will be compared for computational demands, and the speed of both convergence and computation.
14

Computational fluid dynamics in an equation-based, acausal modeling environment

Brown, Jason 15 November 2010 (has links)
The practice of building simulation is split between domains such as energy, multizone airflow, computational fluid dynamics (CFD) airflow, and controls analysis, as well as between the tools which conduct these analyses. Previous work in the integration of these analyses and tools have focused on linking existing tools, written in algorithmic programming languages, together by interfacing them using coupling mechanisms implemented in algorithmic programming languages. This thesis takes a different approach, using the equation-based, object oriented modeling language Modelica to create models in different domains and interfaces between those models within a single framework which has benefits to the modeler/analyst in terms of both representation of physical processes and flexibility in modeling systems composed of many interacting components. Specifically, the simulation of airflows within buildings has historically been compartmentalized into distinct domains such as nodal network (multizone) simulations and CFD. Such airflow simulations are also often treated independently of building energy simulations (via heat transfer) despite their interrelation. Recent work has reported on combining these types of analyses by linking pre-existing simulation software together. Here a prototype CFD package of models is built in Modelica and coupled to models of conductive heat transfer and controls. Comparisons of results of simulations so constituted to analytical solutions and benchmark data available in the literature show good agreement, indicating the technical viability of this approach. Limitations include the absence of turbulence modeling and the lack of modeling features which improve computational efficiency, such as non-uniform grids.
15

Heat transfer in nano/micro multi-component and complex fluids with applications to heat transfer enhancement

Haji Aghaee Khiabani, Reza 30 June 2010 (has links)
Thermal properties of complex suspension flows are investigated using numerical computations. The objective is to develop an efficient and accurate computational method to investigate heat transport in suspension flows. The method presented here is based on solving the lattice Boltzmann equation for the fluid phase, as it is coupled to the Newtonian dynamics equations to model the movement of particles and the energy equation to find the thermal properties. This is a direct numerical simulation that models the free movement of the solid particles suspended in the flow and its effect on the temperature distribution. Parallel implementations are done using MPI (message passing interface) method. Convective heat transfer in internal suspension flow (low solid volume fraction, φ<10%), heat transfer in hot pressing of fiber suspensions and thermal performance of particle filled thermal interface materials (high solid volume fraction, φ>40%) are investigated. The effects of flow disturbance due to movement of suspended particles, thermo-physical properties of suspensions and the particle micro structures are discussed.
16

Modeling particle suspensions using lattice Boltzmann method

Mao, Wenbin 13 January 2014 (has links)
Particle suspensions are common both in nature and in various technological applications. The complex nature of hydrodynamic interactions between particles and the solvent makes such analysis difficult that often requires numerical modeling to understand the behavior of particle suspensions. In this dissertation, we employ a hybrid computational model that integrates a lattice spring model for solid mechanics and a lattice Boltzmann model for fluid dynamics. We use this model to study several practical problems in which the dynamics of spherical and spheroidal particles and deformable capsules in dilute suspensions plays an important role. The results of our studies yield new information regarding the dynamics of solid particle in pressure-driven channel flows and disclose the nonlinear effects associated with fluid inertia leading to particle cross-stream migration. This information not only give us a fundamental insight into the dynamics of dilute suspensions, but also yield engineering guidelines for designing high throughput microfluidic devices for sorting and separation of synthetic particles and biological cells. We first demonstrate that spherical particles can be size-separated in ridged microchannels. Specifically, particles with different sizes follow distinct trajectories as a result of the nonlinear inertial effects and secondary flows created by diagonal ridges in the channel. Then, separation of biological cells by their differential stiffness is studied and compared with experimental results. Cells with different stiffness squeeze through narrow gaps between solid diagonal ridges and channel wall, and migrate across the microchannel with different rates depending on their stiffness. This deformability-based microfluidic platform may be valuable for separating diseased cells from healthy cells, as a variety of cell pathologies manifest through the change in mechanical cell stiffness. Finally, the dynamics of spheroid particles in simple shear and Poiseuille flows are studied. Stable rotational motion, cross-stream migration, and equilibrium trajectories of non-spherical particles in flow are investigated. Effects of particle and fluid inertia on dynamics of particles are disclosed. The dependence of equilibrium trajectory on particle shape reveals a potential application for shape based particle separation.
17

Investigating capillary pressure and interfacial area for multiphase flow in porous media using pore-scale imaging and lattice-Boltzmann modeling /

Porter, Mark L. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 113-127). Also available on the World Wide Web.
18

Analysis of flexible fiber suspensions using the Lattice Boltzmann method

Rezak, Sheila. January 2008 (has links)
Thesis (Ph.D.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Co-Chair: Aidun, K. Cyrus; Committee Co-Chair: Ghiaasiaan, Mostafa; Committee Member: Deng, Yulin; Committee Member: Empie, Jeff; Committee Member: Patterson, Tim.
19

Advances in radiation transport modeling using Lattice Boltzmann Methods

McCulloch, Richard January 1900 (has links)
Master of Science / Mechanical and Nuclear Engineering / Hitesh Bindra / This thesis extends the application of Lattice Boltzmann Methods (LBM) to radiation transport problems in thermal sciences and nuclear engineering. LBM is used to solve the linear Boltzmann transport equation through discretization into Lattice Boltzmann Equations (LBE). The application of weighted summations for the scattering integral as set forth by Bindra and Patil are used in this work. Simplicity and localized discretization are the main advantages of using LBM with fixed lattice configurations for radiation transport problems. Coupled solutions to radiation transport and material energy transport are obtained using a single framework LBM. The resulting radiation field of a one dimensional participating and conducting media are in very good agreement with benchmark results using spherical harmonics, the P₁ method. Grid convergence studies were performed for this coupled conduction-radiation problem and results are found to be first-order accurate in space. In two dimensions, angular discretization for LBM is extended to higher resolution schemes such as D₂Q₈ and a generic formulation is adopted to derive the weights for Radiation Transport Equations (RTEs). Radiation transport in a two dimensional media is solved with LBM and the results are compared to those obtained from the commercial software COMSOL, which uses the Discrete Ordinates Method (DOM) with different angular resolution schemes. Results obtained from different lattice Boltzmann configurations such as D₂Q₄ and D₂Q₈ are compared with DOM and are found to be in good agreement. The verified LBM based radiation transport models are extended for their application into coupled multi-physics problems. A porous radiative burner is modeled as a homogeneous media with an analytical velocity field. Coupling is performed between the convection-diffusion energy transport equation with the analytical velocity field. Results show that radiative transport heats the participating media prior to its entering into the combustion chamber. The limitations of homogeneous models led to the development of a fully coupled LBM multi-physics model for a heterogeneous porous media. This multi-physics code solves three physics: fluid flow, conduction-convection and radiation transport in a single framework. The LBE models in one dimension are applied to solve one-group and two-group eigenvalue problems in bare and reflected slab geometries. The results are compared with existing criticality benchmark reports for different problems. It is found that results agree with benchmark reports for thick slabs (>4 mfp) but they tend to disagree when the critical slab dimensions are less than 3 mfp. The reason for this disagreement can be attributed to having only two angular directions in the one dimensional problems.
20

The aerodynamic design and development of an urban concept vehicle through CFD analysis

Cogan, Donavan January 2016 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2016. / This work presents the computational uid dynamics (CFD) analysis of a light road vehicle. Simulations are conducted using the lattice Boltzmann method (LBM) with the wall adapting local eddy (WALE) turbulence model. Simulations include and compare the use of a rolling road, rotating wheels, adaptive re nement as well as showing comparison with a Reynolds-averaged Navier-Stokes (RANS) solver and the Spalart- Allmaras (SA) turbulence model. The lift coe cient of the vehicle for the most part was seen to show a much greater di erence and inconsistencies when compared to drag from the comparisons of solvers, turbulence models, re nement and the e ect of rolling road. Determining the drag of a road vehicle can be easily achieved and veri ed using multiple solvers and methods, however, the lift coe cient and its validation require a greater understanding of the vehicle ow eld as well as the solvers, turbulence models and re nement levels capable of correctly simulating the turbulent regions around a vehicle. Using the presented method, it was found that the optimisation of vehicle aerodynamics can easily be done alongside the design evolution from initial low-drag shapes to the nal detail design, ensuring aerodynamic characteristics are controlled with aesthetic change.

Page generated in 0.0655 seconds