• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration de matériaux céramiques composites et/ou d'architectures lamellaires pour la protection balistique des personnes et des matériels / Development of composite ceramic materials and / or layered architectures for ballistic application

Aharonian, Charles 18 December 2014 (has links)
Le développement de céramiques légères à hautes performances mécaniques et à bas coût à base de silico-alumineux, suscite un intérêt grandissant dans divers domaines d’application tels que la protection balistique. Dans ce contexte, l’objectif de ce travail a été de développer un matériau innovant susceptible de rivaliser avec les protections balistiques en alumine ou en carbure. Plusieurs voies ont été explorées. Une étude approfondie des compositions de silico-alumineux a permis d’obtenir des matériaux présentant un meilleur compromis masse volumique / module d’Young, et dont le principal avantage est d’utiliser des procédés d’élaboration conventionnels (pressage, coulage sous pression) ainsi que les fours dédiés à la cuisson de la porcelaine par frittage naturel. Afin de renforcer la dureté de surface, des dépôts de carbures ont été réalisés à l’aide d’un protocole qui a permis une bonne accroche du carbure sur le substrat tout en conservant un traitement thermique conventionnel de consolidation. Enfin, des architectures lamellaires ont également été élaborées afin de maximiser les phénomènes de dissipation d’énergie. En bénéficiant d’un différentiel d’expansion thermique entre deux compositions de silico-alumineux, l’apparition de contraintes thermiques résiduelles au refroidissement de l’étape de frittage a permis d’augmenter la valeur de contrainte à la rupture des matériaux à architectures lamellaires de plus de 60%. / The development of lightweight alumino-silicate based ceramics exhibiting high mechanical performances and low cost, shows a growing interest in various application areas such as ballistic protection. In this context, the aims of this study is the development of innovative materials corresponding to competitive ballistic protection comparing to carbide or alumina materials. Several ways were explored. A thorough study of alumino-silicate compositions has allowed to obtain materials with a best compromise density / Young's modulus, the main advantage is the ability to use conventional methods of preparation (pressing, die-casting) and conventional kilns used for the firing of porcelain. To improve the surface hardness, carbide coatings were performed. The original protocol developed leads to carbide coating with good adhesion on the substrate using a traditional thermal treatment method. Finally, lamellar architectures of materials were developed to increase the energy dissipation of failure. Thanks to a differential thermal expansion between the two compositions of alumino-silicates, the occurrence of residual thermal stresses in lamellar materials has increased the average stress of failure values of more than 60%.
2

Studies for Design of Layered Ceramic Armour Inspired by Seashells

Akella, Kiran January 2015 (has links) (PDF)
Pearly layers in seashells, also known as nacreous layers, are reported to be three orders of magnitude tougher than their primary constituent, aragonite. Their high toughness is attributed to a particular structure of alternating layers of natural ceramic and polymer materials. This work tries to emulate it using engineering materials. The thickness, strength, and stiffness of the ceramic layer; the thickness, stiffness, strength, and toughness of the polymer interface layer; and the number of layers are the factors that contribute to different degrees. Furthermore, understanding the relative contribution of different toughening mechanisms in nacre would enable identification of key parameters to design tough engineered ceramics. As a step towards that, in this thesis, layered ceramic beams replicating nacre were studied analytically, computationally, and experimentally. The insights and findings from these studies were then used to develop a new method to make tough layered ceramics mimicking nacre. Subsequently, the use of layered ceramics for armour applications was evaluated. Based on analytical numerical and experimental studies, we observed that the strength of the layers is a key factor to replicate the high toughness of nacre in engineered ceramics. We also demonstrated that, crack deflection and bridging observed in nacre in studies elsewhere, occur due to the high strength of platelets. Based on these findings, the new method developed in this study uses green alumina-based ceramic tapes stacked with screen printed stripes of graphite. During sintering, graphite oxidizes leaving empty channels in the stack. These channels were filled with tough interface materials afterwards. As a result, a ceramic- polymer composite with more than 2-fold increase in toughness was developed. Subsequently, we evaluated layered ceramics for armour applications based on numerical analysis validated with experiments. Consistent to the trends in literature, we observed that layers degrade the resistance to ballistic impact. However, improved energy absorption is demonstrated in layered ceramics. These conflicting dual trends were not presented and quantified in any earlier studies conducted elsewhere. Another new observation not documented earlier is the effect of interface strength. Using an interface material of sufficient strength, penetration resistance of layered ceramics can be improved beyond monolithic ceramics. Using these findings, new layered ceramic armour can be designed that is cost- effective and better performing than monolithic ceramics.
3

The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic / The Role of Bi/Material Interface in Integrity of Layered Metal/Ceramic

Masini, Alessia January 2019 (has links)
The present doctoral thesis summarises results of investigation focused on the characterisation of materials involved in Solid Oxide Cell technology. The main topic of investigation was the ceramic cell, also known as MEA. Particular attention was given to the role that bi-material interfaces, co-sintering effects and residual stresses play in the resulting mechanical response. The first main goal was to investigate the effects of the manufacturing process (i.e. layer by layer deposition) on the mechanical response; to enable this investigation, electrode layers were screen-printed one by one on the electrolyte support and experimental tests were performed after every layer deposition. The experimental activity started with the measurement of the elastic characteristics. Both elastic and shear moduli were measured via three different techniques at room and high temperature. Then, uniaxial and biaxial flexural strengths were determined via two loading configurations. The analysis of the elastic and fracture behaviours of the MEA revealed that the addition of layers to the electrolyte has a detrimental effect on the final mechanical response. Elastic characteristics and flexural strength of the electrolyte on the MEA level are sensibly reduced. The reasons behind the weakening effect can be ascribed to the presence and redistribution of residual stresses, changes in the crack initiation site, porosity of layers and pre-cracks formation in the electrode layers. Finally, the coefficients of thermal expansion were evaluated via dilatometry on bulk materials serving as inputs for finite elements analyses supporting experiments and results interpretation. The second most important goal was to assess the influence of operating conditions on the integrity of the MEA. Here interactions of ceramic–metal interfaces within the repetition unit operating at high temperatures and as well at both oxidative and reductive atmospheres were investigated. The elastic and fracture responses of MEA extracted from SOC stacks after several hours of service were analysed. Layer delamination and loss of mechanical strength were observed with increasing operational time. Moreover, SEM observations helped to detect significant microstructural changes of the electrodes (e.g. demixing, coarsening, elemental migration and depletion), which might be responsible for decreased electrochemical performances. All the materials presented in this work are part of SOC stacks produced and commercialised by Sunfire GmbH, which is one of the world leading companies in the field.

Page generated in 0.074 seconds