• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 13
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electromigration and thermomigration reliability of lead-free solder joints for advanced packaging applications

Chae, Seung-Hyun, 1977- 05 October 2010 (has links)
Electromigration (EM) and thermomigration (TM) reliability of Pb-free solder joints are emerging as critical concerns in advanced packages. In this study, EM and TM phenomena in Sn-2.5Ag solder joints with thick Cu or thin Ni under-bump metallurgy (UBM) were investigated. A series of EM tests were performed to obtain activation energy (Q) and current density exponent (n), and to understand failure mechanisms. Joule heating was also taken into account. Q and n values were determined as follows: for Cu UBM solders, Q = 1.0 eV and n = 1.5; for Ni UBM solders, Q = 0.9 and n = 2.2. Important factors limiting EM reliability of Pb-free solder joints were found to be UBM dissolution with extensive intermetallic compound (IMC) growth and current crowding. IMC growth without current stressing was found to follow the parabolic growth law whereas linear growth law was observed for Cu₆Sn₅ and Ni₃Sn₄ under high current stressing. For Cu UBM solders, the apparent activation energy for IMC growth was consistent with the activation energy for EM, which supports that EM failure was closely related to IMC growth. In contrast, for Ni UBM solders the apparent activation energy was higher than the EM activation energy. It was suggested that the EM failure in the Ni UBM solders could be associated with more than one mass transport mechanism. The current crowding effect was analyzed with different thicknesses of Ni UBM. It was found that the maximum current density in solder could represent the current density term in Black's equation better than the average current density. FEM studies demonstrated that current crowding was mainly controlled by UBM thickness, metal trace design, and passivation opening diameter. A large temperature gradient of the order of 10³ °C/cm was generated across the sample to induce noticeable TM and to compare its effect against that of EM. TM-induced voiding was observed in Ni UBM solders while UBM dissolution with IMC formation occurred in Cu UBM solders. However, the relative effect of TM was found to be several times smaller than that of EM even at this large temperature gradient. / text
22

Transient and Steady-state Creep in a SnAgCu Lead-free Solder Alloy: Experiments and Modeling

Shirley, Dwayne R. 08 March 2011 (has links)
It has been conventional to simplify the thermo-mechanical modeling of solder joints by omitting the primary (transient) contributions to total creep deformation, assuming that secondary (steady-state) creep strain is dominant and primary creep is negligible. The error associated with this assumption has been difficult to assess because it depends on the properties of the solder joint and the temperature-time profile. This research examines the relative contributions of primary and secondary creep in Sn3.8Ag0.7Cu solder using the constant load creep and stress relaxation measurements for bulk tensile specimens and the finite element analysis of a chip resistor (trilayer) solder joint structure that was thermally cycled under multiple temperature ranges and ramp rates. It was found that neglect of primary creep can result in errors in the predicted stress and strain of the solder joint. In turn, these discrepancies can lead to errors in the estimation of the solder thermal fatigue life due to the changing proportion of primary creep strain to total inelastic strain under different thermal profiles. The constant-load creep and stress relaxation data for Sn3.8Ag0.7Cu span a range of strain rates 10(-8) 1/s < strain rate < 10(-4) 1/s, and temperatures 25°C, 75°C and 100°C. Creep and stress relaxation measurements show that transient creep caused faster strain rates during stress relaxation for a given stress compared to the corresponding minimum creep rate from constant-load creep tests. The extent of strain hardening during primary creep was a function of temperature and strain rate. A constitutive creep model was presented for Sn3.8Ag0.7Cu that incorporates both transient and steady-state creep to provide agreement for both creep and stress relaxation data with a single set of eight coefficients. The model utilizes both temperature compensated time and strain rate to normalize minimum strain rate and saturated transient creep strain, thereby establishing equivalence between decreased temperature and increased strain rate. The apparent activation energy of steady-state creep was indicative of both dislocation core and bulk lattice diffusion was the most sensitive model parameter. A saturation threshold was defined that distinguishes whether primary or secondary creep is dominant under either static or variable loading.
23

Transient and Steady-state Creep in a SnAgCu Lead-free Solder Alloy: Experiments and Modeling

Shirley, Dwayne R. 08 March 2011 (has links)
It has been conventional to simplify the thermo-mechanical modeling of solder joints by omitting the primary (transient) contributions to total creep deformation, assuming that secondary (steady-state) creep strain is dominant and primary creep is negligible. The error associated with this assumption has been difficult to assess because it depends on the properties of the solder joint and the temperature-time profile. This research examines the relative contributions of primary and secondary creep in Sn3.8Ag0.7Cu solder using the constant load creep and stress relaxation measurements for bulk tensile specimens and the finite element analysis of a chip resistor (trilayer) solder joint structure that was thermally cycled under multiple temperature ranges and ramp rates. It was found that neglect of primary creep can result in errors in the predicted stress and strain of the solder joint. In turn, these discrepancies can lead to errors in the estimation of the solder thermal fatigue life due to the changing proportion of primary creep strain to total inelastic strain under different thermal profiles. The constant-load creep and stress relaxation data for Sn3.8Ag0.7Cu span a range of strain rates 10(-8) 1/s < strain rate < 10(-4) 1/s, and temperatures 25°C, 75°C and 100°C. Creep and stress relaxation measurements show that transient creep caused faster strain rates during stress relaxation for a given stress compared to the corresponding minimum creep rate from constant-load creep tests. The extent of strain hardening during primary creep was a function of temperature and strain rate. A constitutive creep model was presented for Sn3.8Ag0.7Cu that incorporates both transient and steady-state creep to provide agreement for both creep and stress relaxation data with a single set of eight coefficients. The model utilizes both temperature compensated time and strain rate to normalize minimum strain rate and saturated transient creep strain, thereby establishing equivalence between decreased temperature and increased strain rate. The apparent activation energy of steady-state creep was indicative of both dislocation core and bulk lattice diffusion was the most sensitive model parameter. A saturation threshold was defined that distinguishes whether primary or secondary creep is dominant under either static or variable loading.
24

Multiscale Modeling of Mechanical Shock Behavior of Environmentally-Benign Lead-Free Solders in Electronic Packaging

January 2011 (has links)
abstract: With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments. / Dissertation/Thesis / Ph.D. Mechanical Engineering 2011
25

Applied Meta-Analysis of Lead-Free Solder Reliability

January 2014 (has links)
abstract: This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment. / Dissertation/Thesis / Masters Thesis Industrial Engineering 2014
26

Numerical analysis of lead-free solder joints : effects of thermal cycling and electromigration

Zha, Xu January 2016 (has links)
To meet the requirements of miniaturization and multifunction in microelectronics, understanding of their reliability and performance has become an important research subject in order to characterise electronics served under various loadings. Along with the demands of the increasing miniaturization of electronic devices, various properties and the relevant thermo-mechanical-electrical response of the lead-free solder joints to thermal cycling and electro-migration become the critical factors, which affect the service life of microelectronics in different applications. However, due to the size and structure of solder interconnects in microelectronics, traditional methods based on experiments are not applicable in the evaluation of their reliability under complex joint loadings. This thesis presents an investigation, which is based on finite-element method, into the performance of lead-free solder interconnects under thermal fatigue and electro-migration, specifically in the areas as follows: (1) the investigation of thermal-mechanical performance and fatigue-life prediction of flip-chip package under different sizes to achieve a further understanding of IMC layer and size effects of a flip chip package under thermal cycling; (2) the establishment of a numerical method, simulating void-formation/crack-propagation based on the results of finite-element analysis, to allow the prediction of crack evolution and failure time for electro-migration reliability of solder bumps; (3) the establishment of a flow-based algorithm for combination effects of thermal-mechanical and electro-migration that was subsequent implemented in to an FE model to evaluate the reliability assessment of service lives associated with a flip chip package.
27

Termomechanické namáhání bezolovnatého pájeného spoje / Thermomechanical Stress of Lead Free Solder Joint

Libich, Jiří January 2011 (has links)
This diploma thesis deals with the reliability of lead-free solder joints at a different interconnection structures. The first goal is to design the test cases shape BGA (FC) for testing the strength of lead-free solder joints at shear test in link with design of measuring method to detection shear strength during isothermal aging of lead-free solder joints. Following this shear stressing is investigating influence material and process compatibility, ie. pads finishing, material of solder and integrate of temperature (this mean thermal energy supplied during soldering) to lead-free solder joint strength.
28

Vliv inertní atmosféry na smáčení povrchu u bezolovnatého pájení / Influence of Inert Atmosphere on Surface Wetting in Lead Free Soldering

Nestrojil, Michal January 2014 (has links)
This master´s thesis dealing with study of influence of inert atmosphere on the wettability of soldered surfaces. The theoretical part is discussed the issue of the soldering, solder joint, oxidation, and inert atmosphere. The glass cover with internal inert gas preheating for the wetting balance testing was prepared in the practical part. With this adjustment were realised tests, in which was examined the effect of the inert gases on the wettability of different materials combination. Further experiments were focused on plasma surface cleaning as possible flux substitution. The evaluation of these experiments were discussed in the end of this master´s thesis. Some of topics were designed for further experiments.
29

Termomechanická spolehlivost pájených propojení v elektronice / Termomechanical reliability soldered connections in electronic

Novotný, Václav January 2014 (has links)
The diploma thesis deals with the sphere of solder joints reliability. The narrower focus is use of lead-free solder alloy SAC305 in the production process and parameters of its reliability. The text describes the main factors, which have the influence on the reliability of solder joints under conditions of thermal cycling. These factors also relate with choice of substrates and technological processes of preparation, which are characterized and described. Another part is devoted to estimating the reliability of soldered connections and are listed the fatigue model to estimate reliability. These fatigue models are categorized based on different physical mechanisms that operate in the soldered joints during operation. Based on the comparison of different models is selected the most appropriate model and in conjunction with simulation in ANSYS is estimated reliability. For this purpose is selected soldered connection of the FR-4 substrate and ceramic substrate via SMD component. They are manufactured test kits and subjected to conditions of temperature cycling. Results obtained from experimental measurements are compared with results obtained by simulation and calculation.
30

Roztékavost bezolovnatých pájek na keramických substrátech / Wetting of lead-free solders on ceramic substrates

Lipavský, Lubomír January 2014 (has links)
This master's thesis deals with issue of lead-free soldering in protective atmosphere with focus on wetting test. Theorethical part is focused on the types of lead-free solders, wettability tests performed on solder joints, different types of soldering or comparison of influence of the base material in regards to the wetting of the solder. The goal of practical part is testing and comparison of spreadability of selected lead-free solder on two conductive surfaces with different concentration of oxygen in protective nitrogen atmosphere. Testing has been performed on ceramic substrate which differs this method from others, performed on organic substrate. For an over-melted solder, the crystal-growth on surface in regards to protective atmosphere concentration is shown.

Page generated in 0.0392 seconds