• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • Tagged with
  • 18
  • 18
  • 16
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Prediction and delay of 2D-laminar boundary layer separation near leading edges.

Dostovalova, Anna January 2002 (has links)
Boundary-layer flows near leading edges of generally curved obstacles have been studied for a long time. Apart from having many practical applications, the theory and approaches prevailing in this area stimulate development of a variety of computational tools and form a ground for testing them. The specific aim of this work is to study two-dimensional laminar boundary layer flows near the leading edges of airfoils and other elongated bodies, and to explore geometries for which boundary layer separation can be avoided. This class of problems is relevant to optimal design of wings, aircraft and projectile noses, laminar flow control methods and adaptive wing technology. One of the findings of this work suggests that local modifications to parabolic wing noses can yield up to 11% increase in the unseparated angle of attack. Another result obtained here is the set of shortest possible generalised elliptic noses of long symmetric bodies which allow unseparated flow. Methods adopted in this work are based on the combined use of numerically solved Prandtl equations written in Gortler variables, and inviscid solutions obtained semi-analytically by the conformal mapping method. The resulting technique being reliable, fast and computationally inexpensive, can complement or test the results obtained using a comprehensive CFD approach. / Thesis (Ph.D.)--School of Mathematical Sciences, 2002.
12

On the stability of the swept leading-edge boundary layer /

Obrist, Dominik, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 188-196).
13

Prediction and delay of 2D-laminar boundary layer separation near leading edges.

Dostovalova, Anna January 2002 (has links)
Boundary-layer flows near leading edges of generally curved obstacles have been studied for a long time. Apart from having many practical applications, the theory and approaches prevailing in this area stimulate development of a variety of computational tools and form a ground for testing them. The specific aim of this work is to study two-dimensional laminar boundary layer flows near the leading edges of airfoils and other elongated bodies, and to explore geometries for which boundary layer separation can be avoided. This class of problems is relevant to optimal design of wings, aircraft and projectile noses, laminar flow control methods and adaptive wing technology. One of the findings of this work suggests that local modifications to parabolic wing noses can yield up to 11% increase in the unseparated angle of attack. Another result obtained here is the set of shortest possible generalised elliptic noses of long symmetric bodies which allow unseparated flow. Methods adopted in this work are based on the combined use of numerically solved Prandtl equations written in Gortler variables, and inviscid solutions obtained semi-analytically by the conformal mapping method. The resulting technique being reliable, fast and computationally inexpensive, can complement or test the results obtained using a comprehensive CFD approach. / Thesis (Ph.D.)--School of Mathematical Sciences, 2002.
14

Aerodynamic pitch-up of cranked arrow wings: estimation, trim, and configuration design

Benoliel, Alexander M. 10 November 2009 (has links)
Low aspect ratio, highly-swept cranked arrow wing planforms are often proposed for high-speed civil transports. These wing planforms offer low supersonic drag without suffering greatly from low lift/drag ratios in low-speed flight. They can, however, suffer from pitch-up at modest angles of attack (as low as 5°) during low-speed flight due to leading edge vortex influence, flow separation and vortex breakdown. The work presented here describes an investigation conducted to study past research on the longitudinal aerodynamic characteristics of highly-swept cranked wing planforms, the development of a new method to estimate pitch-up of these configurations, and the applications of this new method to the analysis of tail designs for trim at high lift coefficients. The survey of past research placed emphasis on 1) understanding the problem of pitch-up, 2) ascertaining the effects of leading and trailing edge flaps, and 3) determining the benefits and shortfalls of tail, tailless, and canard configurations. The estimation method used a vortex lattice method to calculate the inviscid flow solution. Then, the results were adjusted to account for flow separation on the outboard wing section by imposing a limit on the equivalent 2-D sectional lift coefficient. The new method offered a means of making low cost estimates of the nonlinear pitching moment characteristics of slender, cranked arrow wing configurations with increased accuracy compared to conventional linear methods. Numerous comparisons with data are included. The new method was applied to analyze the trim requirement of slender wing designs generated by an aircraft configuration optimization and design program. The effects of trailing edge flaps and horizontal tail on the trimmed lift coefficient was demonstrated. Finally, recommendations were made to the application of this new method to multidisciplinary design optimization methods. / Master of Science
15

A numerical study of the effects of leading edge vortex flaps on the performance of a 75° delta wing

McNutt, Mary Ellen January 1982 (has links)
Using a general, unsteady, nonlinear vortex lattice method, the aerodynamic loads have been found on a 75° delta wing with and without leading edge vortex flaps. The flap had an area approximately 26 percent of the wing area with a constant chord of 6.7 percent of the wing mean aerodynamic chord and was deflected at 30°. Results for lift, drag, axial force, and pitching moment coefficients are compared with experimental data and show very good agreement. Individual pressure difference coefficients along the wing and flap are also presented and compared with experimental data. Overall, the method shows the leading edge vortex flap to be very effective in reducing drag while maintaining lift comparable to that of the plain wing. / Master of Science
16

Thermal Management Strategies for Hypersonic Flight: Supercritical CO2 Jet Impingement Cooling Investigation for Leading Edge

Sargunaraj, Manoj Prabakar 01 January 2023 (has links) (PDF)
This study addresses the critical need for effective thermal management in hypersonic vehicles facing intense heat at their leading edge due to high enthalpy flow. The objective is to propose an active impingement cooling system that ensures the structural stability and performance of these vehicles. This dissertation presents an in-depth exploration of the numerical simulations conducted on the hypersonic leading edge, focusing on a 3mm radius with active cooling utilizing supercritical carbon dioxide (sCO2) as the coolant. The research incorporates conjugate simulations that merge external hypersonic flow and sCO2 active cooling. Utilizing a thermodynamic non-equilibrium two-temperature model and various chemical models, including the 5-species Park's model and the 11-species Gupta's model, separate validations for the external hypersonic flow and internal sCO2 coolant flow were conducted. These validations facilitated combined simulations, underscoring the potential of maintaining metal temperatures within operational limits using sCO2 coolant. A comparative study of the 5- 5-species Park model and 11-species Gupta model demonstrated the former's effectiveness in predicting flow fields at Mach 7. Furthermore, this study shows the effect of varying the coolant tube-to-leading-edge distance (H/D), Thermal barrier coating thickness, and impingement angles, demonstrating improved heat transfer performance through these variations. A key aspect of this work is the exploration of converting hypersonic vehicle heat flux to power using the sCO2 cycle. The conceptual study, illustrated through the Mach 7 case, confirms the feasibility of harnessing power from aerodynamic heat flux, marking a significant progression in the field. This research contributes to the field by offering a detailed analysis of active impingement cooling for hypersonic leading edges, integrating real gas effects and multiple chemical models. The study adds novelty by investigating heat transfer enhancements through iv geometric variations and evaluating sCO2's potential as a coolant, addressing key facets of hypersonic vehicle thermal management.
17

Numerical simulation of the unsteady aerodynamics of flapping airfoils

Young, John, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
There is currently a great deal of interest within the aviation community in the design of small, slow-flying but manoeuvrable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid airfoils are considered at Reynolds number 2,000 ??? 40,000. A compressible Navier-Stokes simulation is combined with numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits ???vortex lock-in??? as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This is caused by interaction between the flapping frequency and the ???bluff-body??? vortex shedding frequency apparent even for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is governed by flapping frequency and amplitude separately, rather than the Strouhal number directly.
18

Numerical simulation of the unsteady aerodynamics of flapping airfoils

Young, John, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
There is currently a great deal of interest within the aviation community in the design of small, slow-flying but manoeuvrable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid airfoils are considered at Reynolds number 2,000 ??? 40,000. A compressible Navier-Stokes simulation is combined with numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits ???vortex lock-in??? as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This is caused by interaction between the flapping frequency and the ???bluff-body??? vortex shedding frequency apparent even for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is governed by flapping frequency and amplitude separately, rather than the Strouhal number directly.

Page generated in 0.0506 seconds