Spelling suggestions: "subject:"breading points"" "subject:"bleading points""
1 |
Measurements and modeling of turbulent consumption speeds of syngas fuel blendsVenkateswaran, Prabhakar 19 February 2013 (has links)
Increasingly stringent emission requirements and dwindling petroleum reserves have generated interest in expanding the role of synthesis gas (syngas) fuels in power generation applications. Syngas fuels are the product of gasifying organic-based feedstock such as coal and biomass and are composed of mainly H₂ and CO. However, the use of syngas fuels in lean premixed gas turbine systems has been limited in part because the behavior of turbulent flames in these mixtures at practical gas turbine operating conditions are not well understood. This thesis presents an investigation of the influence of fuel composition and pressure on the turbulent consumption speed, ST,GC, and the turbulent flame brush thickness, FBT, for these mixtures. ST,GC and FBT are global parameters which represent the average rate of conversion of reactants to products and the average heat release distribution of the turbulent flame respectively.
A comprehensive database of turbulent consumption speed measurements obtained at pressures up to 20 atm and H₂/CO ratios of 30/70 to 90/10 by volume is presented. There are two key findings from this database. First, mixtures of different H₂/CO ratios but with the same un-stretched laminar flame speeds, SL,0, exposed to the same turbulence intensities, u'rms , have different turbulent consumption speeds. Second, higher pressures augment the turbulent consumption speed when SL,0 is held constant across pressures and H₂/CO ratios.
These observations are attributed to the mixture stretch sensitivities, which are incorporated into a physics-based model for the turbulent consumption speed using quasi-steady leading points concepts. The derived scaling law closely resembles Damkhler's classical turbulent flame speed scaling, except that the maximum stretched laminar flame speed, SL,max, arises as the normalizing parameter. Scaling the ST,GC data by SL,max shows good collapse of the data at fixed pressures, but systematic differences between data taken at different pressures are observed. These differences are attributed to non-quasi-steady chemistry effects, which are quantified with a Damkhler number defined as the ratio of the chemical time scale associated with SL,max and a fluid mechanic time scale. The observed scatter in the normalized turbulent consumption speed data correlates very well with this Damkhler number, suggesting that ST,GC can be parameterized by u'rms/SL,max and the leading point Damkhler number.
Finally, a systematic investigation of the influence of pressure and fuel composition on the flame brush thickness is presented. The flame brush thickness is shown to be independent of the H₂/CO ratio if SL,0 is held constant across the mixtures. However, increasing the equivalence ratio for lean mixtures at a constant H₂/CO ratio, results in a thicker flame brush. Increasing the pressure is shown to augment the flame brush thickness, a result which has not been previously reported in the literature. Classical correlations based on turbulent diffusion concepts collapse the flame brush thickness data obtained at fixed u'rms/U₀ and pressure reasonably well, but systematic differences exist between the data at different u'rms/U₀ and pressures.
|
2 |
Leading points concepts in turbulent premixed combustion modelingAmato, Alberto 27 August 2014 (has links)
The propagation of premixed flames in turbulent flows is a problem of wide physical and technological interest, with a significant literature on their propagation speed and front topology. While certain scalings and parametric dependencies are well understood, a variety of problems remain. One major challenge, and focus of this thesis, is to model the influence of fuel/oxidizer composition on turbulent burning rates.
Classical explanations for augmentation of turbulent burning rates by turbulent velocity fluctuations rely on global arguments - i.e., the turbulent burning velocity increase is directly proportional to the increase in flame surface area and mean local burning rate along the flame. However, the development of such global approaches is complicated by the abundance of phenomena influencing the propagation of turbulent premixed flames. Emphasizing key governing processes and cutting-off interesting but marginal phenomena appears to be necessary to make further progress in understanding the subject.
An alternative approach to understand turbulent augmentation of burning rates is based upon so-called "leading points", which are intrinsically local properties of the turbulent flame. Leading points concepts suggest that the key physical mechanism controlling turbulent burning velocities of premixed flames is the velocity of the points on the flame that propagate farthest out into the reactants. It is postulated that modifications in the overall turbulent combustion speed depend solely on modifications of the burning rate at the leading points since an increase (decrease) in the average propagation speed of these points causes more (less) flame area to be produced behind them. In this framework, modeling of turbulent burning rates can be thought as consisting of two sub-problems: the modeling of (1) burning rates at the leading points and of (2) the dynamics/statistics of the leading points in the turbulent flame. The main objective of this thesis is to critically address both aspects, providing validation and development of the physical description put forward by leading point concepts.
To address the first sub-problem, a comparison between numerical simulations of one-dimensional laminar flames in different geometrical configurations and statistics from a database of direct numerical simulations (DNS) is detailed. In this thesis, it is shown that the leading portions of the turbulent flame front display a structure that on average can be reproduced reasonably well by results obtained from model geometries with the same curvature. However, the comparison between model laminar flame computations and highly curved flamelets is complicated by the presence of negative (i.e., compressive) strain rates, due to gas expansion. For the highest turbulent intensity investigated, local consumption speeds, curvatures, strain rates and flame thicknesses approach the maximum values obtained by the laminar model geometries, while other cases display substantially lower values.
To address the second sub-problem, the dynamics of flame propagation in simplified flow geometries is studied theoretically. Utilizing results for Hamilton-Jacobi equations from the Aubry-Mather theory, it is shown how the overall flame front progation under certain conditions is controlled only by discrete points on the flame. Based on these results, definitions of leading points are proposed and their dynamics is studied. These results validate some basic ideas from leading points arguments, but also modify them appreciably. For the simple case of a front propagating in a one-dimensional shear flow, these results clearly show that the front displacement speed is controlled by velocity field characteristics at discrete points on the flame only when the amplitude of the shear flow is sufficiently large and does not vary too rapidly in time. However, these points do not generally lie on the farthest forward point of the front. On the contrary, for sufficiently weak or unsteady flow perturbations, the front displacement speed is not controlled by discrete points, but rather by the entire spatial distribution of the velocity field. For these conditions, the leading points do not have any dynamical significance in controlling the front displacement speed. Finally, these results clearly show that the effects of flame curvature sensitivity in modifying the front displacement speed can be successfully interpreted in term of leading point concepts.
|
3 |
Turbulent flame propagation characteristics of high hydrogen content fuelsMarshall, Andrew 21 September 2015 (has links)
Increasingly stringent pollution and emission controls have caused a rise in the use of combustors operating under lean, premixed conditions. Operating lean (excess air) lowers the level of nitrous oxides (NOx) emitted to the environment. In addition, concerns over climate change due to increased carbon dioxide (CO2) emissions and the need for energy independence in the United States have spurred interest in developing combustors capable of operating with a wide range of fuel compositions. One method to decrease the carbon footprint of modern combustors is the use of high hydrogen content (HHC) fuels. The objective of this research is to develop tools to better understand the physics of turbulent flame propagation in highly stretch sensitive premixed flames in order to predict their behavior at conditions realistic to the environment of gas turbine combustors.
This thesis presents the results of an experimental study into the flame propagation characteristics of highly stretch-sensitive, turbulent premixed flames generated in a low swirl burner (LSB). This study uses a scaling law, developed in an earlier thesis from leading point concepts for turbulent premixed flames, to collapse turbulent flame speed data over a wide range of conditions. The flow and flame structure are characterized using high speed particle image velocimetry (PIV) over a wide range of fuel compositions, mean flow velocities, and turbulence levels. The first part of this study looks at turbulent flame speeds for these mixtures and applies the previously developed leading points scaling model in order to test its validity in an alternate geometry. The model was found to collapse the turbulent flame speed data over a wide range of fuel compositions and turbulence levels, giving merit to the leading points model as a method that can produce meaningful results with different geometries and turbulent flame speed definitions. The second part of this thesis examines flame front topologies and stretch statistics of these highly stretch sensitive, turbulent premixed flames. Instantaneous flame front locations and local flow velocities are used to calculate flame curvatures and tangential strain rates. Statistics of these two quantities are calculated both over the entire flame surface and also conditioned at the leading points of the flames. Results presented do not support the arguments made in the development of the leading points model. Only minor effects of fuel composition are noted on curvature statistics, which are mostly dominated by the turbulence. There is a stronger sensitivity for tangential strain rate statistics, however, time-averaged values are still well below the values hypothesized from the leading points model. The results of this study emphasize the importance of local flame topology measurements towards the development of predictive models of the turbulent flame speed.
|
Page generated in 0.0449 seconds