• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The infection process of <i>Colletotrichum truncatum</i> on lentil

Wang, Jinghe 05 May 2009
The fungus <i>Colletotrichum truncatum</i> (Schw.) Andrus and Moore causes lentil anthracnose, which is a major challenge to lentil production in Western Canada. The pathogen infects leaves and stems, resulting in defoliation, stem girdling, plant wilting, and possibly plant death. Two races, Ct0 and Ct1, have been identified in the pathogen population in Canada. However, the differences in the infection process between the two races have not been described in detail. Currently, several lentil cultivars, such as CDC Redberry, CDC Robin, CDC Rosetown, CDC Rouleau, and CDC Viceroy, have resistance against race Ct1, whereas there are no cultivars showing resistance to race Ct0. The objective of this study was to investigate differences in the infection process between race Ct0 and race Ct1 using the fully susceptible cultivar Eston and the race Ct1-resistant cultivar CDC Robin. Experiments on glass well slides showed that race Ct0 had no inherently different conidium germination rate compared to race Ct1, and that differences in conidium germination between the two races on lentil plants were the result of specific interactions between the two races and lentil resistance. Investigations of the infection process of the two races on detached and attached leaves of both lentil cultivars were conducted starting 12 h postinoculation (hpi) until 72 hpi, including conidium germination, appressorium formation, and leaf penetration. Results indicated that differences in virulence of the two races may be related to the ability of conidia to germinate and form appressoria, as well as the ability of primary infection hyphae to grow in response to cues from the lentil cultivars. Furthermore, resistance of lentil to isolates of race Ct1 appeared to involve an inhibition in and/or delay of the spread of primary infection hyphae inside the plant tissue. Results of infection studies of one isolate from each race on attached leaves did not completely agree with results of the same isolates on detached leaves. Based on this study, race Ct0 and race Ct1 do not appear to be classical physiological races, but may represent aggressive races or some intermediate forms.
2

The infection process of <i>Colletotrichum truncatum</i> on lentil

Wang, Jinghe 05 May 2009 (has links)
The fungus <i>Colletotrichum truncatum</i> (Schw.) Andrus and Moore causes lentil anthracnose, which is a major challenge to lentil production in Western Canada. The pathogen infects leaves and stems, resulting in defoliation, stem girdling, plant wilting, and possibly plant death. Two races, Ct0 and Ct1, have been identified in the pathogen population in Canada. However, the differences in the infection process between the two races have not been described in detail. Currently, several lentil cultivars, such as CDC Redberry, CDC Robin, CDC Rosetown, CDC Rouleau, and CDC Viceroy, have resistance against race Ct1, whereas there are no cultivars showing resistance to race Ct0. The objective of this study was to investigate differences in the infection process between race Ct0 and race Ct1 using the fully susceptible cultivar Eston and the race Ct1-resistant cultivar CDC Robin. Experiments on glass well slides showed that race Ct0 had no inherently different conidium germination rate compared to race Ct1, and that differences in conidium germination between the two races on lentil plants were the result of specific interactions between the two races and lentil resistance. Investigations of the infection process of the two races on detached and attached leaves of both lentil cultivars were conducted starting 12 h postinoculation (hpi) until 72 hpi, including conidium germination, appressorium formation, and leaf penetration. Results indicated that differences in virulence of the two races may be related to the ability of conidia to germinate and form appressoria, as well as the ability of primary infection hyphae to grow in response to cues from the lentil cultivars. Furthermore, resistance of lentil to isolates of race Ct1 appeared to involve an inhibition in and/or delay of the spread of primary infection hyphae inside the plant tissue. Results of infection studies of one isolate from each race on attached leaves did not completely agree with results of the same isolates on detached leaves. Based on this study, race Ct0 and race Ct1 do not appear to be classical physiological races, but may represent aggressive races or some intermediate forms.
3

Volatilisation des pesticides depuis les plantes : approche expérimentale et modélisation / Pesticide volatilization from plants : experimental approach and modelling

Lichiheb, Nebila 08 October 2014 (has links)
L’activité agricole présente la principale source de contamination de l’atmosphère par les pesticides. Les niveaux de concentration des pesticides dans l’atmosphère méritent une attention particulière de la part de la recherche compte tenu de leurs impacts potentiels sur la population et les écosystèmes. Bien que la volatilisation depuis la plante soit reconnue plus intense et plus rapide que la volatilisation depuis le sol, cette voie de transfert est à ce jour la moins bien renseignée avec peu de modèles disponibles pour sa description. Le manque de connaissances est lié essentiellement à la complexité des interactions entre les processus ayant lieu à la surface de la feuille et qui sont en compétition avec la volatilisation, notamment la pénétration foliaire et la photodégradation. Un système de chambre de volatilisation a été développé afin d’étudier d’une manière simultanée les processus de volatilisation et de pénétration foliaire. Les expérimentations réalisées avec 3 fongicides (époxyconazole, chlorothalonil et fenpropidine) appliqués sur feuilles de blé ont permis une description affinée du processus de pénétration foliaire grâce au protocole d’extraction des feuilles mis en place. Des coefficients de pénétration indispensables à la modélisation du devenir des pesticides à la surface des feuilles ont été calculés ainsi que des relations entre les propriétés physico-chimiques des pesticides et les processus qui contrôlent leur distribution sur et dans la feuille. L’étude expérimentale portant sur le processus de photodégradation a consisté en une irradiation de films de cire simulant les feuilles de blé traités avec des pesticides dans un simulateur solaire Suntest. Les résultats ont démontré que les pertes par photodégradation sont négligeables dans les conditions expérimentales et les pesticides choisis. Le modèle d’échange Sol-Végétation-Atmosphère SURFATM a été adapté aux pesticides selon une approche inspirée du modèle PEARL avec dans un premier temps des coefficients empiriques des processus de pénétration et de photodégradation. L’originalité de ce modèle réside dans sa description mécaniste des conditions micro-météorologiques à l’intérieur du couvert végétal. Ensuite, une approche de distribution des résidus de pesticides dans différents compartiments de la surface foliaire a été définie en se basant sur les résultats expérimentaux, permettant ainsi de prédire la fraction disponible à la volatilisation. La combinaison de cette approche avec les relations déduites entre les propriétés physico-chimiques des pesticides et le processus de pénétration foliaire améliore la généricité du modèle. Par ailleurs, l’effet de la formulation observé expérimentalement a été intégré via des coefficients empiriques permettant ainsi de mieux simuler les flux de volatilisation des produits systémiques. La comparaison entreles sorties du modèles et les résultats expérimentaux recueillis à partir de deux jeux de données acquis sur deux sites différents donne des résultats satisfaisants. Une fois activée la volatilisation depuis le sol, le modèle SURFATM-Pesticides permettra de prédire les émissions vers l’atmosphère de pesticides par volatilisation depuis les parcelles traitées. / The agricultural activity presents the main source of the atmospheric contamination by pesticides. The occurrence of pesticides in the atmosphere concerns the research community due to their potential impacts on population and ecosystems. The volatilization from plants is higher and faster than the volatilization from soil. However, this transfer pathway is difficult to assess with few available models. The lack of knowledge on pesticide volatilization from plants is essentially linked to the complex interactions between processes occurring at the leaf surface and competing with volatilization, such as leaf penetration and photodegradation. A laboratory volatilization chamber was developed in order to study simultaneously the processes of volatilization and leaf penetration of 3 fungicides (epoxyconazole, chlorothalonil and fenpropidine) applied on wheat leaves. These experimentations allowed a refined description of leaf penetration process using a well-defined sequential extraction procedure of leaves. Leaf penetration coefficients, which are necessary to modelling the pesticide fate in plants, were calculated. Moreover relationships between physicochemical properties of pesticides and processes regulating their distribution on and in plant leaves were identified. The experimental study on the photodegradation process consisted in irradiating wax films using simulated solarlight. The results showed that for experimental conditions and pesticides chosen in our study, photodegradation seems to have played a minor role as dissipation process.The soil-vegetation-atmosphere exchange model SURFATM was adapted for pesticides using an approach inspired from the parameterization developed in the PEARL model. The originality of this model resides in its mechanistic description of the micro-meteorological conditions inside the canopy. As a first step the SURFATM-Pesticides model describes leaf penetration and photodegradation processes using empirical coefficients. Then a distribution of pesticide residues in the different compartments of the leaf surface was identified based on the experimental results. This approach allowed the quantification of pesticide fraction on the leaf surface available for volatilization. The combination of this compartmental approach and the identified relationships between physicochemical properties of pesticides and the leaf penetration process improves the genericity of the model. Moreover, the effect of the pesticide formulation in the commercial preparations was integrated in the model via empirical coefficients allowing a better simulation of the volatilization fluxes in the case of systemic pesticides. Comparison of model results and experimental measurements collected from two datasets showed satisfactory results. Once the contribution of soil volatilization has been activated, the SURFATM-Pesticides model will allow us to predict the overall pesticide volatilization at the field scale.

Page generated in 0.1024 seconds