• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Leak-off test (LOT) models

Fu, Yao 09 October 2014 (has links)
A leak-off test is one of the most common procedures to test the fracture pressure of the exposed formations. After cementing and drilling out of the casing shoe, the LOT is run to verify that the casing, cement, and formation can withstand the pressure needed to safely drill the next section of the well. The equivalent mud weight obtained from the test is recorded and reported to government agencies as the strength of the casing shoe. Drilling engineers also rely on the reading from the LOT and use it as the maximum pressure that may be imposed on the formation to avoid fracturing. Exceeding the maximum pressure may result in serious consequences such as lost circulation, one of the most costly events in drilling operations. Therefore, accurate determination of formation fracture gradient is critical and can avoid a variety of well control problems. Considerable efforts to model LOT and leak-off behaviors have been done in the past. Altun (2001) and Paknejad (2007) each presented a unique method to estimate leak-off volume by dividing the pressurized system into four sub-systems: mud compression, casing expansion, fluid leakage, and borehole expansion. The volume response from each sub-system is then combined to represent the total volume pumped during a LOT. However, neither model included the expansion volumes of cement sheath and formation rock outside of the casing; these volumes are not trivial and should not be neglected. In addition, both models use only pump pressure to calculate volumes generated during a LOT. The actual downhole pressure and the pressure acting from the outside are ignored. In this study, the volume contributions from cement sheath expansion and formation rock expansion are calculated using single cylinder Lame’s equation. The results are added with Altun’s borehole expansion volume, mud compression volume, and fluid leakage volume to represent the total volume for the enhanced Altun model. Secondly, a Wider Windows mechanical expansion model is developed based on the concentric cylinder theory. This model simulates the compounded effect of casing, cement, and formation expansion along the cased hole based on pressures inside the wellbore and out in the far-field stress region. The volume generated from concentric cylinder expansion is then combined with Altun’s mud compression volume and fluid leakage volume to simulate the total volume pumped during a LOT. The developed models were verified using three sets of field LOT data obtained from literature and compared with the original Altun model. The results confirmed that leak-off volume along the cased hole should be analyzed as a compounded effect of casing, cement, and formation expansion. Overall, the WW models accurately simulate both leak-off volume and leak-off behaviors. / text
2

An Investigation Of The Leak-off Tests Conducted In Oil And Natural Gas Wells Drilled In Thrace Basin

Kayael, Burak 01 February 2012 (has links) (PDF)
This study aims to analyze the leak-off tests carried out in the Thrace Basin of Turkey by Turkish Petroleum Corporation and find any relationship that may exist between leak-off test results and drilled formations as well as drilling parameters, such as mud weight, depth. The analysis of 77 leak-off tests indicated that there is no close correlation between the mud weight of test fluid and equivalent mud weight (fracture gradient) if the test is carried out within impermeable sections. On the other hand, the correlation between mud weight and equivalent mud weight increase while running the test within permeable-productive zones. It is also found that the leak-off test results are not dependent on the depth but the formation to be tested. The analyzed leak-off test results from Thrace Basin showed that the fracture gradient is not the limiting factor to set the casing of any section unless a gas show is observed during drilling operation which occurred only in 5 wells out of 78 wells analyzed.

Page generated in 0.1391 seconds