Spelling suggestions: "subject:"leaner autant house"" "subject:"leaner autant mouse""
1 |
Synaptic Transmission in the Leaner Mutant Mouse Calyx of Held/MNTB SynapseEpps, Tina 20 January 2009 (has links)
The effects of alpha1A subunit mutations on presynaptic Ca2+ channel activity and functional development of synaptic properties remain elusive. The calyx of Held/medial nucleus of the trapezoid body synapse is an ideal model for studying the developmental effects of presynaptic voltage-gated Ca2+ channel (VGCC) impairment on synaptic function since simultaneous voltage-clamp recordings can be made directly from the pre- and postsynapse.
The alpha1A subunit leaner (tgla/la) mutation induced a profound reduction in synaptic transmission after hearing onset (> postnatal day 12; P12), with relatively preserved relationship between presynaptic Ca2+ current (Pre-ICa) and release and G-protein-mediated inhibition. Some synaptic properties were more reflective of an immature state, while other properties displayed a delay in maturation after P12.
Direct presynaptic recordings from P15/16 tgla/la nerve terminals revealed a decrease in the density of Pre-ICa, elevated activation threshold and slowing in the kinetics of VGCCs, all of which contribute to the deficit in transmitter release. Fractional contribution of P/Q-type channels to total Pre-ICa and their role in vesicle release was markedly reduced. N-type Ca2+ channels and close association of VGCCs to release sites was not sufficient to fully compensate for impaired P/Q-type channel function. The extent to which compensatory mechanisms preserve synaptic transmission at tgla/la synapses was further constrained by the developmental narrowing of the action potential waveform.
Activation of the cAMP pathway by forskolin or direct modulation of VGCCs by cdk inhibitors rescued deficits in transmitter release at P15/16 tgla/la synapses. The major effect of roscovitine was a slowing of presynaptic VGCC deactivation kinetics accompanied by a leftward shift in the activation curve. Activation of the cAMP pathway or direct modulation of presynaptic VGCCs may serve as two potential pathways to facilitate release and improve neuronal communication at synapses normally compromised by impaired P/Q-type channel function.
While significant for the tgla/la mutant, these studies provide an important advancement in our understanding of the crucial developmental and functional roles of P/Q-type Ca2+ channels in driving the maturation of synaptic properties at central synapses. These findings may improve our understanding of the pathophysiology of presynaptic VGCCs and elucidate essential mechanisms underlying the tgla/la phenotype.
|
2 |
Synaptic Transmission in the Leaner Mutant Mouse Calyx of Held/MNTB SynapseEpps, Tina 20 January 2009 (has links)
The effects of alpha1A subunit mutations on presynaptic Ca2+ channel activity and functional development of synaptic properties remain elusive. The calyx of Held/medial nucleus of the trapezoid body synapse is an ideal model for studying the developmental effects of presynaptic voltage-gated Ca2+ channel (VGCC) impairment on synaptic function since simultaneous voltage-clamp recordings can be made directly from the pre- and postsynapse.
The alpha1A subunit leaner (tgla/la) mutation induced a profound reduction in synaptic transmission after hearing onset (> postnatal day 12; P12), with relatively preserved relationship between presynaptic Ca2+ current (Pre-ICa) and release and G-protein-mediated inhibition. Some synaptic properties were more reflective of an immature state, while other properties displayed a delay in maturation after P12.
Direct presynaptic recordings from P15/16 tgla/la nerve terminals revealed a decrease in the density of Pre-ICa, elevated activation threshold and slowing in the kinetics of VGCCs, all of which contribute to the deficit in transmitter release. Fractional contribution of P/Q-type channels to total Pre-ICa and their role in vesicle release was markedly reduced. N-type Ca2+ channels and close association of VGCCs to release sites was not sufficient to fully compensate for impaired P/Q-type channel function. The extent to which compensatory mechanisms preserve synaptic transmission at tgla/la synapses was further constrained by the developmental narrowing of the action potential waveform.
Activation of the cAMP pathway by forskolin or direct modulation of VGCCs by cdk inhibitors rescued deficits in transmitter release at P15/16 tgla/la synapses. The major effect of roscovitine was a slowing of presynaptic VGCC deactivation kinetics accompanied by a leftward shift in the activation curve. Activation of the cAMP pathway or direct modulation of presynaptic VGCCs may serve as two potential pathways to facilitate release and improve neuronal communication at synapses normally compromised by impaired P/Q-type channel function.
While significant for the tgla/la mutant, these studies provide an important advancement in our understanding of the crucial developmental and functional roles of P/Q-type Ca2+ channels in driving the maturation of synaptic properties at central synapses. These findings may improve our understanding of the pathophysiology of presynaptic VGCCs and elucidate essential mechanisms underlying the tgla/la phenotype.
|
Page generated in 0.0613 seconds