• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Behavioral and Neural Effects of Rejection Sensitivity on Selective Attention and Feedback-Based Learning

Crew, Christopher January 2014 (has links)
Gaining acceptance and avoiding rejection is arguably one the most fundamental and challenging relational tasks that we face. Given the importance of close relationships, an especially serious threat is rejection, real or imagined, by significant others. Considerable research supports the idea that prolonged exposure to harsh rejection can have deleterious effects on one's physical and emotional wellbeing (Baumeister & Leary, 1995; see Dickerson & Kemeny 2004, for a full review). Research also suggests that early experiences with rejection can result in a bias to anxiously expect and readily perceive rejection in other's behavior - a disposition known to derail interpersonal relationships. This phenomenon is known as Rejection Sensitivity (RS; Feldman & Downey, 1994; Downey & Feldman, 1996). There have been important advances in understanding psychological and physiological responses to interpersonal rejection (e.g., Downey & Feldman, 1996; Downey, Mougios, Ayduk, London, & Shoda, 2004; Dickerson & Kemney, 2004; Romero-Canyas & Downey, 2005; Powers, Pietromonaco, Gunlicks, Sayer, 2006; Richman & Leary, 2009). However, relatively less is known about patterns of attentional processes underlying reactions to rejection cues and events, as well as the extent to which RS impacts learning and memory. These unanswered questions are of critical importance as theory and research suggests that information-processing biases may provide an explanation for the maintenance of RS and disorders like social phobia and anxiety that share many of the characteristics of rejection sensitive individuals (See Bar Haim et al., 2007 for a meta-analytic review). Study 1 uses a well-established attentional control paradigm (Attentional Network Task - ANT; Fan et al., 2002) to assess the relationship between RS and basic attentional mechanisms for alerting, orienting, and executive control. Results from study 1 suggest that RS is not associated with the functioning of attentional networks important for alerting, orienting, and executive control, raising the possibility that RS operates as a distinct system that interacts with attentional networks to influence attention deployment in the presence of social threat cues. This hypothesis is tested in study 2. Study 2 uses a selective attention paradigm that measures eye movements during a visual probe task (e.g., MacLeod, Mathews, & Tata, 1986) in order to assess patterns of attention deployment to socially threatening stimuli in RS individuals. Study 2 also tests the attenuating effects of executive control on processing of social threat cues in RS individuals. The latter part of study 2 is designed to address important theoretical and empirical questions about the ability of attentional control to attenuate maladaptive information processing biases in RS individuals. Results suggest that RS is associated with initial vigilance and later avoidance for social threat cues but, as predicted, vigilance for social threat cues is attenuated by high executive control. That is, having good executive control (as measured by self-report and behavioral measures - the ANT) can help to reduce the extent to which social threat cues capture and hold the attention of RS individuals. Study 3 was designed to answer the question of how the tendency of RS individuals to detect and react to social threat cues can affect more overt forms of learning and memory (i.e., declarative memories). In order to address this question, study 3 used an incidental-learning paradigm where participants answered general knowledge questions (What is the capital of Delaware?) followed by immediate performance accuracy (correct vs. incorrect) and the correct answer (Dover). Initially incorrect items were retested 24 to 48 hours later to determine if the correct answer had been successfully encoded. Event-Related Potentials (ERPs) were used to measure neural responses to performance feedback (correct vs. incorrect at first test) and learning feedback (the correct answer) to assess whether (1) RS is associated with greater sensitivity to performance feedback in general or specifically for social performance feedback, (2) whether these reactions mediate successful learning (i.e., retrieval of corrective feedback), and (3) whether there are gender differences in how RS operates in an evaluative context, which would provide an explanation, based on neural mechanisms, to previously found differences in which RS females seem to be more vulnerable to reduced achievement in competitive academic settings (London et al., 2013). Overall, behavioral results suggest that individuals were able to encode and retrieve corrective information after receiving social (face) performance feedback at the same rate as they were after receiving non-social (symbol) performance feedback, suggesting that contextualizing performance feedback within the social domain did not generally enhance or impair learning and memory. However, within females, higher RS scores were associated with poorer retrieval in the social performance feedback condition suggesting that RS moderates the effect of social performance feedback on retrieval in females but not in males. To better understand the mechanisms underlying these behavioral effects we examined the following ERP waveforms associated with processing of social and non-social performance feedback: the frontally-maximal feedback related negativity (FRN), the frontally-maximal orienting effect (P3a), and a centrally-maximal late positive potential (LPP). Respectively, these components have been shown to reflect more automatic processing of feedback valence, orienting responses to rare events, and sustained attention to motivationally relevant information. Finally, ERP waveforms associated with processing of the corrective feedback were also analyzed. Consistent with previous research, the FRN was enhanced in response to performance feedback indicating that an incorrect response had been made while the P3a and LPP were enhanced in response to performance feedback indicating that a correct response, a rarer outcome in this challenging task, had been made. There were no gender differences in the overall amplitude of the FRN, P3a or LPP. However, within females, RS was associated with a smaller FRN amplitude in the social performance feedback condition. Analyses were also conducted on the relationship between these ERPs, encoding of the corrective feedback (i.e., seeing the correct answer on the screen), and subsequent memory (i.e., correctly answering the question at retest). Although the P3a and the LPP were not associated with encoding of the corrective feedback or subsequent memory, the FRN positively predicted greater processing of the corrective feedback and subsequent memory in the social feedback condition. However, within females, the FRN negatively predicted encoding of the corrective feedback and subsequent memory only in the social condition. Finally, a mediation analysis was used to further understand the process by which neural responses to the performance feedback might affect processing of the corrective feedback and subsequent memory overall and perhaps differently for RS females and males. Results suggest that social performance feedback reduces retrieval success in RS females by reducing the level of engagement with corrective feedback, ultimately resulting in poorer encoding into long-term memory. This knowledge could help expand our understanding of how rejection cues may disrupt, by triggering maladaptive strategies, the attention deployment of individuals who are especially sensitive to social threat whether for personal reasons (e.g., a history of experience with harsh rejection from caregivers) or because of membership in a marginalized social group (e.g., women in law or STEM fields). In doing so, this research could identify important avenues for interventions that work to enhance interpersonal functioning in RS individuals by training them to use self regulatory strategies that reduce attentional biases and augment information processing (i.e., learning and memory).
2

¿When is it the Gesture that Counts: Telling Stories that cut to the [Cyber]chase – or, gest get to the po¡nt!

Swart, Michael Isaac January 2016 (has links)
Lakoff and Nuñez (2000) argue that the origins of mathematical thinking arise from the progressive development of the human sensorium and experience. Cognitive science research in in education plays a big role in developing new pedagogies, especially those that leverage new “Cyberlearning” technologies. The current study employs two principle frameworks for creating pedagogy for learning mathematical fractions: (1) grounded and embodied cognition (Varela, Thompson & Rosch, 1991; Glenberg, 1997; 2003; Barsalou, 1999; 2008), (2) situated cognition (Lesh, 1981; Lave 1988, Greeno, 1998; Roth, 2002). Grounded and embodied cognition was operationalized through the gesture. Although gesture is traditionally discussed as a spontaneous co-articulation of speech (Kendon, 1972; McNeill & Levy, 1980; 1992; Goldin-Meadow, 1986) it is taking on a new role with the advent of 21st century technologies that utilize gestural interface. Using gestures as simulated action (Hostetter and Alibali, 2008), we developed two sets of gestural mechanics based on an exploratory study on the gestures elementary students used to explain mathematical fractions (Swart, 2014): (1) iconic gestures (I) – i.e., enactive of the processes to create objects, (2) deictic gestures (D) – i.e., index pointing to ground or identify objects or locations. Situated cognition was operationalized through narrative (Black and Bower, 1980; Graesser, Hauft-Smith, Cohen, and Pyles 1980; Graesser, Singer, Trabasso, 1994). Researchers crafted two types of narratives in order to create a situated learning environment (Hennessy, 1993): (1) strong narrative (S) – with a setting, characters and plot (based on the popular PBS Kids television show, Cyberchase, (2) weak narrative (W) – without an explicit setting, characters or plot. Combining these two factors together, the research team designed and developed Mobile Mathematics Movement (M3). Using the two independent variables, gesture (I vs. D) and narrative (S vs. W), M3 was crafted into 4 different versions: SI, SD, WI, WD. The first two iterations, M3:i1 and M3:i2, were tested in randomized factorial experiments in afterschool programs with high-needs populations. After completing these studies employing a design-based research (DBR) methodology, the tutor-game developed into its latest iteration, M3:i3. The curriculum of M3 had students employing a splitting objects (i.e., parts-to-whole) schema (Steffe, 2004) and was divided into two parts: (Part 1) object fracturing (x5 per level): estimating, denominating, numerating, re-estimating; (Part 2) object equivalency (comparing 5 fractions): comparing, ordering, verifying magnitudes, verifying positions on vertical number line. In the final dissertation study, 131 students (x̄age = 8.78 yrs, 52.6% Female; 39.7% Hispanic; 32.8% African-American; 19.9% South-East Asian; 3.8% Caucasian; 3.8% South Asian (Indian); 97.7 % received free/reduced lunch) from the Harlem and Lower East Side neighborhoods of New York City were consented and assented and completed the study. Students were randomly assigned to 1 of the 4 conditions, completed a direct pre-assessment of the curriculum as well as a transfer pre-assessment, played all seven levels of the tutor-game, completed an exit survey (free response and 5-point likert – motivation, self-efficacy, engagement, learning), completed a direct post-assessment of the curriculum as well as a transfer post-assessment (parallel forms) and a 7 minute semi-structured clinical interview. Factorial ANOVAs indicated a significant interaction between gesture and narrative (though all groups showed significant learning pre to post) on the direct assessment. Both the SI and WD groups significantly outperformed the other two groups, though were not different from each other. Though there was not a significant interaction between gesture and narrative on for the transfer assessment, pair-wise comparisons and planned contrasts showed that the SI group outperformed all the other groups. Follow up hierarchical linear regressions (HLR) showed that game play significantly mediated students’ learning. Specifically, students’ performances estimating and denominating were predictive of direct learning of the curriculum while estimating, denomination and numeration were all predictive of transfer. Further HLRs also found that students’ learning was moderated by their existing proficiencies for fractions. This finding helped clarify the nature of the narrative-gesture interaction, such that low-proficiency students improved more in the WD condition and high-proficiency students improved more in the SI condition. An exploratory factor analysis of the 5-point likert exit survey showed loaded on four factors as anticipated, with significant loadings for engagement and learning, but revealed no significant differences between the conditions. The significant interaction revealed that both a weak narrative (non-contextualized) environments using deictic (identity) gestures as well as strong narrative (contextualized) environments using iconic (enactive) gestures are differentially beneficial for learning. Contrary to our interaction hypothesis, learning for novices benefitted from a more abstract environment, supporting the work of (Kaminski, Sloutsky, Heckler, 2008) and learning for those with higher proficiencies at fractions was better in the more concrete environment (e.g., Moreno, Ozogul, & Reisslein (2011). The likert data supports research suggesting that students find digital platforms engaging and empowering, regardless of learning or not (for review see Wouters, van Nimwegen, van Oostendorp, & van der Spek, 2013). Together, these results have important implications for the design of learning environments and a digital pedagogy and follow-up work is necessary for expounding on the interactions between gestures and narratives as well as the possible mediation by task complexity.
3

Onderwysers se insluiting van psigo-biologiese aspekte van leer in hul klaskamerpraktykhandelinge

De Wit, Naomi Magdalena 20 August 2012 (has links)
D.Ed. / This inquiry focused on the inclusion of the psycho-biology of learning in teachers activities in school practice. The research question addressed a sample of teachers personal interpretation of the effect of an in-service programme on their practice. The programme consisted of a study of aspects of the biology of learning and how to convert these to instruction. The main claim or thesis of the study was that an inclusive model of education would be incomplete without a psycho-physiological view of learning. After a comprehensive literature review, a field study was launched making use of the following methods: focus group interviews, personal sketches and individual interviews. The data was collated and interpreted per data category and especially as a configuration. Findings from the field study were used to illuminate the thesis or claim that founded the study.

Page generated in 0.1822 seconds