Spelling suggestions: "subject:"1earning maps"" "subject:"1earning gaps""
1 |
Refining Learning Maps with Data Fitting TechniquesAdjei, Seth Akonor 20 March 2015 (has links)
Learning maps have been used to represent student knowledge for many years. These maps are usually hand made by experts in a given domain. However, these hand-made maps have not been found to be predictive of student performance. Several methods have been proposed to find bet-ter fitting learning maps. These methods include the Learning Factors Analysis (LFA) model and the Rule-space method. In this thesis we report on the application of one of the proposed operations in the LFA method to a small section of a skill graph and develop a greedy search algorithm for finding better fitting models for this graph. Additionally an investigation of the factors that influence the search for better data fitting models using the proposed algorithm is reported. We also present an empirical study in which PLACEments, an adaptive testing system that employs a skill graph, is modified to test the strength of prerequisite skill links in a given learning map and propose a method for refining learning maps based on those findings. It was found that the proposed greedy search algorithm performs as well as an original skill graph but with a smaller set of skills in the graph. Additionally it was found that, among other factors, the number of unnecessary skills, the number of items in the graph, and the guess and slip rates of the items tagged with skills in the graph have an impact on the search. Further, the size of the evaluation data set impacts the search. The more data there is for the search, the more predictive the learned skill graph. Additionally, PLACEments, an adaptive testing feature of ASSISTments, has been found to be useful for refining skill graphs by detecting the strengths of prerequisite links between skills in a graph.
|
2 |
Creating Systems and Applying Large-Scale Methods to Improve Student Remediation in Online Tutoring Systems in Real-time and at ScaleSelent, Douglas A 08 June 2017 (has links)
"A common problem shared amongst online tutoring systems is the time-consuming nature of content creation. It has been estimated that an hour of online instruction can take up to 100-300 hours to create. Several systems have created tools to expedite content creation, such as the Cognitive Tutors Authoring Tool (CTAT) and the ASSISTments builder. Although these tools make content creation more efficient, they all still depend on the efforts of a content creator and/or past historical. These tools do not take full advantage of the power of the crowd. These issues and challenges faced by online tutoring systems provide an ideal environment to implement a solution using crowdsourcing. I created the PeerASSIST system to provide a solution to the challenges faced with tutoring content creation. PeerASSIST crowdsources the work students have done on problems inside the ASSISTments online tutoring system and redistributes that work as a form of tutoring to their peers, who are in need of assistance. Multi-objective multi-armed bandit algorithms are used to distribute student work, which balance exploring which work is good and exploiting the best currently known work. These policies are customized to run in a real-world environment with multiple asynchronous reward functions and an infinite number of actions. Inspired by major companies such as Google, Facebook, and Bing, PeerASSIST is also designed as a platform for simultaneous online experimentation in real-time and at scale. Currently over 600 teachers (grades K-12) are requiring students to show their work. Over 300,000 instances of student work have been collected from over 18,000 students across 28,000 problems. From the student work collected, 2,000 instances have been redistributed to over 550 students who needed help over the past few months. I conducted a randomized controlled experiment to evaluate the effectiveness of PeerASSIST on student performance. Other contributions include representing learning maps as Bayesian networks to model student performance, creating a machine-learning algorithm to derive student incorrect processes from their incorrect answer and the inputs of the problem, and applying Bayesian hypothesis testing to A/B experiments. We showed that learning maps can be simplified without practical loss of accuracy and that time series data is necessary to simplify learning maps if the static data is highly correlated. I also created several interventions to evaluate the effectiveness of the buggy messages generated from the machine-learned incorrect processes. The null results of these experiments demonstrate the difficulty of creating a successful tutoring and suggest that other methods of tutoring content creation (i.e. PeerASSIST) should be explored."
|
Page generated in 0.0876 seconds