• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contextualizing Observational Data For Modeling Human Performance

Trinh, Viet 01 January 2009 (has links)
This research focuses on the ability to contextualize observed human behaviors in efforts to automate the process of tactical human performance modeling through learning from observations. This effort to contextualize human behavior is aimed at minimizing the role and involvement of the knowledge engineers required in building intelligent Context-based Reasoning (CxBR) agents. More specifically, the goal is to automatically discover the context in which a human actor is situated when performing a mission to facilitate the learning of such CxBR models. This research is derived from the contextualization problem left behind in Fernlund's research on using the Genetic Context Learner (GenCL) to model CxBR agents from observed human performance [Fernlund, 2004]. To accomplish the process of context discovery, this research proposes two contextualization algorithms: Contextualized Fuzzy ART (CFA) and Context Partitioning and Clustering (COPAC). The former is a more naive approach utilizing the well known Fuzzy ART strategy while the latter is a robust algorithm developed on the principles of CxBR. Using Fernlund's original five drivers, the CFA and COPAC algorithms were tested and evaluated on their ability to effectively contextualize each driver's individualized set of behaviors into well-formed and meaningful context bases as well as generating high-fidelity agents through the integration with Fernlund's GenCL algorithm. The resultant set of agents was able to capture and generalized each driver's individualized behaviors.

Page generated in 0.1146 seconds