• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 473
  • 171
  • 62
  • 40
  • 26
  • 19
  • 14
  • 14
  • 13
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1011
  • 1011
  • 200
  • 181
  • 165
  • 157
  • 148
  • 137
  • 123
  • 115
  • 96
  • 93
  • 80
  • 79
  • 76
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Algorithms for a Partially Regularized Least Squares Problem

Skoglund, Ingegerd January 2007 (has links)
<p>Vid analys av vattenprover tagna från t.ex. ett vattendrag betäms halten av olika ämnen. Dessa halter är ofta beroende av vattenföringen. Det är av intresse att ta reda på om observerade förändringar i halterna beror på naturliga variationer eller är orsakade av andra faktorer. För att undersöka detta har föreslagits en statistisk tidsseriemodell som innehåller okända parametrar. Modellen anpassas till uppmätta data vilket leder till ett underbestämt ekvationssystem. I avhandlingen studeras bl.a. olika sätt att säkerställa en unik och rimlig lösning. Grundidén är att införa vissa tilläggsvillkor på de sökta parametrarna. I den studerade modellen kan man t.ex. kräva att vissa parametrar inte varierar kraftigt med tiden men tillåter årstidsvariationer. Det görs genom att dessa parametrar i modellen regulariseras.</p><p>Detta ger upphov till ett minsta kvadratproblem med en eller två regulariseringsparametrar. I och med att inte alla ingående parametrar regulariseras får vi dessutom ett partiellt regulariserat minsta kvadratproblem. I allmänhet känner man inte värden på regulariseringsparametrarna utan problemet kan behöva lösas med flera olika värden på dessa för att få en rimlig lösning. I avhandlingen studeras hur detta problem kan lösas numeriskt med i huvudsak två olika metoder, en iterativ och en direkt metod. Dessutom studeras några sätt att bestämma lämpliga värden på regulariseringsparametrarna.</p><p>I en iterativ lösningsmetod förbättras stegvis en given begynnelseapproximation tills ett lämpligt valt stoppkriterium blir uppfyllt. Vi använder här konjugerade gradientmetoden med speciellt konstruerade prekonditionerare. Antalet iterationer som krävs för att lösa problemet utan prekonditionering och med prekonditionering jämförs både teoretiskt och praktiskt. Metoden undersöks här endast med samma värde på de två regulariseringsparametrarna.</p><p>I den direkta metoden används QR-faktorisering för att lösa minsta kvadratproblemet. Idén är att först utföra de beräkningar som kan göras oberoende av regulariseringsparametrarna samtidigt som hänsyn tas till problemets speciella struktur.</p><p>För att bestämma värden på regulariseringsparametrarna generaliseras Reinsch’s etod till fallet med två parametrar. Även generaliserad korsvalidering och en mindre beräkningstung Monte Carlo-metod undersöks.</p> / <p>Statistical analysis of data from rivers deals with time series which are dependent, e.g., on climatic and seasonal factors. For example, it is a well-known fact that the load of substances in rivers can be strongly dependent on the runoff. It is of interest to find out whether observed changes in riverine loads are due only to natural variation or caused by other factors. Semi-parametric models have been proposed for estimation of time-varying linear relationships between runoff and riverine loads of substances. The aim of this work is to study some numerical methods for solving the linear least squares problem which arises.</p><p>The model gives a linear system of the form <em>A</em><em>1x1</em><em> + A</em><em>2x2</em><em> + n = b</em><em>1</em>. The vector <em>n</em> consists of identically distributed random variables all with mean zero. The unknowns, <em>x,</em> are split into two groups, <em>x</em><em>1</em><em> </em>and <em>x</em><em>2</em><em>.</em> In this model, usually there are more unknowns than observations and the resulting linear system is most often consistent having an infinite number of solutions. Hence some constraint on the parameter vector x is needed. One possibility is to avoid rapid variation in, e.g., the parameters<em> x</em><em>2</em><em>.</em> This can be accomplished by regularizing using a matrix <em>A</em><em>3</em>, which is a discretization of some norm. The problem is formulated</p><p>as a partially regularized least squares problem with one or two regularization parameters. The parameter <em>x</em><em>2</em> has here a two-dimensional structure. By using two different regularization parameters it is possible to regularize separately in each dimension.</p><p>We first study (for the case of one parameter only) the conjugate gradient method for solution of the problem. To improve rate of convergence blockpreconditioners of Schur complement type are suggested, analyzed and tested. Also a direct solution method based on QR decomposition is studied. The idea is to first perform operations independent of the values of the regularization parameters. Here we utilize the special block-structure of the problem. We further discuss the choice of regularization parameters and generalize in particular Reinsch’s method to the case with two parameters. Finally the cross-validation technique is treated. Here also a Monte Carlo method is used by which an approximation to the generalized cross-validation function can be computed efficiently.</p>
212

Institutionella förutsättningar för långsiktig ekonomisk välfärd : en empirisk undersökning av institutionernas roll i tillväxttteorin

Larsson, Johan January 2006 (has links)
<p>Jag använder ett från Världsbanken nyligen utkommet datamaterial över institutionell kvalitet i världens länder för att i en replikeringsstudie undersöka sambandet mellan institutionell utveckling och ekonomisk tillväxt. Modellen har med framgång redan tidigare använts, men i detta arbete är tidsperioden en senare och datamaterialet enligt min bedömning av högre kvalitet. För att kunna göra det senare uttalandet och analysera resultaten på ett uttömmande sätt, innefattar arbetet en översiktlig presentation av institutionella teorier. Eftersom undersökt samband i utgångsläget antas uppvisa dubbelriktad kausalitet, använder jag ett ekonometriskt tillvägagångssätt innehållande instrumentering för att trygga validiteten. Sammantaget visar resultaten en enkelriktad, positiv kausaleffekt från institutionell kvalitet till ekonomisk tillväxt. Det är en bit kvar till en verkligt fruktbar modellkonstruktion, samtidigt som arbetet pekar på att institutioner hör hemma i en sådan.</p>
213

Multiobject tracking by adaptive hypothesis testing

January 1979 (has links)
by Kenneth M. Keverian, Nils R. Sandell, Jr. / Office of Naval Research Contract ONR/N00014-77-C-0532 (85552). / Originally presented as the first author's thesis, (B.S.) in the M.I.T. Dept. of Electrical Engineering and Computer Science, 1979. / Bibliography: p. 114-115.
214

Event compression using recursive least squares signal processing

January 1980 (has links)
Webster Pope Dove. / Originally published as thesis (Dept. of Electrical Engineering and Computer Science, M.S., 1980). / Bibliography: leaf 150. / National Science Foundation Grant ENG76-24117 National Science Foundation Grant ECS79-15226
215

Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics

Pontaza, Juan Pablo 30 September 2004 (has links)
We consider the application of least-squares variational principles and the finite element method to the numerical solution of boundary value problems arising in the fields of solidand fluidmechanics.For manyof these problems least-squares principles offer many theoretical and computational advantages in the implementation of the corresponding finite element model that are not present in the traditional weak form Galerkin finite element model.Most notably, the use of least-squares principles leads to a variational unconstrained minimization problem where stability conditions such as inf-sup conditions (typically arising in mixed methods using weak form Galerkin finite element formulations) never arise. In addition, the least-squares based finite elementmodelalways yields a discrete system ofequations witha symmetric positive definite coeffcientmatrix.These attributes, amongst manyothers highlightedand detailed in this work, allow the developmentofrobust andeffcient finite elementmodels for problems of practical importance. The research documented herein encompasses least-squares based formulations for incompressible and compressible viscous fluid flow, the bending of thin and thick plates, and for the analysis of shear-deformable shell structures.
216

Estimation in partly parametric additive Cox models

Läuter, Henning January 2003 (has links)
The dependence between survival times and covariates is described e.g. by proportional hazard models. We consider partly parametric Cox models and discuss here the estimation of interesting parameters. We represent the ma- ximum likelihood approach and extend the results of Huang (1999) from linear to nonlinear parameters. Then we investigate the least squares esti- mation and formulate conditions for the a.s. boundedness and consistency of these estimators.
217

Algorithms for a Partially Regularized Least Squares Problem

Skoglund, Ingegerd January 2007 (has links)
Vid analys av vattenprover tagna från t.ex. ett vattendrag betäms halten av olika ämnen. Dessa halter är ofta beroende av vattenföringen. Det är av intresse att ta reda på om observerade förändringar i halterna beror på naturliga variationer eller är orsakade av andra faktorer. För att undersöka detta har föreslagits en statistisk tidsseriemodell som innehåller okända parametrar. Modellen anpassas till uppmätta data vilket leder till ett underbestämt ekvationssystem. I avhandlingen studeras bl.a. olika sätt att säkerställa en unik och rimlig lösning. Grundidén är att införa vissa tilläggsvillkor på de sökta parametrarna. I den studerade modellen kan man t.ex. kräva att vissa parametrar inte varierar kraftigt med tiden men tillåter årstidsvariationer. Det görs genom att dessa parametrar i modellen regulariseras. Detta ger upphov till ett minsta kvadratproblem med en eller två regulariseringsparametrar. I och med att inte alla ingående parametrar regulariseras får vi dessutom ett partiellt regulariserat minsta kvadratproblem. I allmänhet känner man inte värden på regulariseringsparametrarna utan problemet kan behöva lösas med flera olika värden på dessa för att få en rimlig lösning. I avhandlingen studeras hur detta problem kan lösas numeriskt med i huvudsak två olika metoder, en iterativ och en direkt metod. Dessutom studeras några sätt att bestämma lämpliga värden på regulariseringsparametrarna. I en iterativ lösningsmetod förbättras stegvis en given begynnelseapproximation tills ett lämpligt valt stoppkriterium blir uppfyllt. Vi använder här konjugerade gradientmetoden med speciellt konstruerade prekonditionerare. Antalet iterationer som krävs för att lösa problemet utan prekonditionering och med prekonditionering jämförs både teoretiskt och praktiskt. Metoden undersöks här endast med samma värde på de två regulariseringsparametrarna. I den direkta metoden används QR-faktorisering för att lösa minsta kvadratproblemet. Idén är att först utföra de beräkningar som kan göras oberoende av regulariseringsparametrarna samtidigt som hänsyn tas till problemets speciella struktur. För att bestämma värden på regulariseringsparametrarna generaliseras Reinsch’s etod till fallet med två parametrar. Även generaliserad korsvalidering och en mindre beräkningstung Monte Carlo-metod undersöks. / Statistical analysis of data from rivers deals with time series which are dependent, e.g., on climatic and seasonal factors. For example, it is a well-known fact that the load of substances in rivers can be strongly dependent on the runoff. It is of interest to find out whether observed changes in riverine loads are due only to natural variation or caused by other factors. Semi-parametric models have been proposed for estimation of time-varying linear relationships between runoff and riverine loads of substances. The aim of this work is to study some numerical methods for solving the linear least squares problem which arises. The model gives a linear system of the form A1x1 + A2x2 + n = b1. The vector n consists of identically distributed random variables all with mean zero. The unknowns, x, are split into two groups, x1 and x2. In this model, usually there are more unknowns than observations and the resulting linear system is most often consistent having an infinite number of solutions. Hence some constraint on the parameter vector x is needed. One possibility is to avoid rapid variation in, e.g., the parameters x2. This can be accomplished by regularizing using a matrix A3, which is a discretization of some norm. The problem is formulated as a partially regularized least squares problem with one or two regularization parameters. The parameter x2 has here a two-dimensional structure. By using two different regularization parameters it is possible to regularize separately in each dimension. We first study (for the case of one parameter only) the conjugate gradient method for solution of the problem. To improve rate of convergence blockpreconditioners of Schur complement type are suggested, analyzed and tested. Also a direct solution method based on QR decomposition is studied. The idea is to first perform operations independent of the values of the regularization parameters. Here we utilize the special block-structure of the problem. We further discuss the choice of regularization parameters and generalize in particular Reinsch’s method to the case with two parameters. Finally the cross-validation technique is treated. Here also a Monte Carlo method is used by which an approximation to the generalized cross-validation function can be computed efficiently.
218

Acoustic Emission in Composite Laminates - Numerical Simulations and Experimental Characterization

Johnson, Mikael January 2002 (has links)
No description available.
219

Regression methods in multidimensional prediction and estimation

Björkström, Anders January 2007 (has links)
In regression with near collinear explanatory variables, the least squares predictor has large variance. Ordinary least squares regression (OLSR) often leads to unrealistic regression coefficients. Several regularized regression methods have been proposed as alternatives. Well-known are principal components regression (PCR), ridge regression (RR) and continuum regression (CR). The latter two involve a continuous metaparameter, offering additional flexibility. For a univariate response variable, CR incorporates OLSR, PLSR, and PCR as special cases, for special values of the metaparameter. CR is also closely related to RR. However, CR can in fact yield regressors that vary discontinuously with the metaparameter. Thus, the relation between CR and RR is not always one-to-one. We develop a new class of regression methods, LSRR, essentially the same as CR, but without discontinuities, and prove that any optimization principle will yield a regressor proportional to a RR, provided only that the principle implies maximizing some function of the regressor's sample correlation coefficient and its sample variance. For a multivariate response vector we demonstrate that a number of well-established regression methods are related, in that they are special cases of basically one general procedure. We try a more general method based on this procedure, with two meta-parameters. In a simulation study we compare this method to ridge regression, multivariate PLSR and repeated univariate PLSR. For most types of data studied, all methods do approximately equally well. There are cases where RR and LSRR yield larger errors than the other methods, and we conclude that one-factor methods are not adequate for situations where more than one latent variable are needed to describe the data. Among those based on latent variables, none of the methods tried is superior to the others in any obvious way.
220

Comparison of Linear-Correction Spherical-Interpolation Location Methods in Multi-Sensor Environments

Yu, Cheng-lung 22 August 2007 (has links)
In indoor environment, the multi-sensor system can be used as an efficient solution for target location process, in terms of lower estimation cost, due to the factor that sensors have the advantages of low power, simple, cheap, and low operation complexity. However, the location methods and the placements of designed multisensor have great impact on the location performance. Based on the time difference of arrival (TDOA), the present research utilizes linear-correction spherical-interpolation (LCSI) method to estimate the location of its targets. The method is a combination of the linear-correction least-squares method and the spherical-interpolation method. Apart from the usual process of iterative, nonlinear minimization, and consequently, under the influence of noise interference and target-sensor geometry, the spherical-interpolation method will produce better results; therefore, SI method is used in place of the LS part of the LCLS method and named as the LCSI method. The objective is to correct the SI method to generate a better estimate performance. In addition to the performance issues, the limitation of the methods will also be examined. The geometric dilution of precision (GDOP) of the TDOA location method in the 3-D scenario is demonstrated with the effects on location performance of both inside and outside of the multi-sensor formation. Programmed 3-D scenario are used in the simulations, where cases with three different multiple sensor formations and two different target heights are investigated. From the simulation results of various location methods, it can be seen that LCSI has has its advantages over other methods in the wireless TDOA location.

Page generated in 0.0613 seconds