• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algoritmos de aprendizagem para aproximaÃÃo da cinemÃtica inversa de robÃs manipuladores: um estudo comparativo / Machine learning algorithms for inverse kinematics approximation of robot manipulators: a comparative study

Davyd Bandeira de Melo 06 July 2015 (has links)
In this dissertation it is reported the results of a comprehensive comparative study involving seven machine learning algorithms applied to the task of approximating the inverse kinematic model of 3 robotic arms (planar, PUMA 560 and Motoman HP6). The evaluated algorithm are the following ones: Multilayer Perceptron (MLP), Extreme Learning Machine (ELM), Least Squares Support Vector Regression (LS-SVR), Minimal Learning Machine (MLM), Gaussian Processes (GP), Adaptive Network-Based Fuzzy Inference Systems (ANFIS) and Local Linear Mapping (LLM). Each algorithm is evaluated with respect to its accuracy in estimating the joint angles given the cartesian coordinates which comprise end-effector trajectories within the robot workspace. A comprehensive evaluation of the performances of the aforementioned algorithms is carried out based on correlation analysis of the residuals. Finally, hypothesis testing procedures are also executed in order to verifying if there are significant differences in performance among the best algorithms. / Nesta dissertaÃÃo sÃo reportados os resultados de um amplo estudo comparativo envolvendo sete algoritmos de aprendizado de mÃquinas aplicados à tarefa de aproximaÃÃo do modelo cinemÃtico inverso de 3 robÃs manipuladores (planar, PUMA 560 e Motoman HP6). Os algoritmos avaliados sÃo os seguintes: Perceptron Multicamadas (MLP), MÃquina de Aprendizado Extremo (ELM), RegressÃo de MÃnimos Quadrados via Vetores-Suporte (LS-SVR), MÃquina de Aprendizado MÃnimo (MLM), Processos Gaussianos (PG), Sistema de InferÃncia Fuzzy Baseado em Rede Adaptativa (ANFIS) e Mapeamento Linear Local (LLM). Estes algoritmos sÃo avaliados quanto à acurÃcia na estimaÃÃo dos Ãngulos das juntas dos robÃs manipuladores em experimentos envolvendo a geraÃÃo de vÃrios tipos de trajetÃrias no volume de trabalho dos referidos robÃs. Uma avaliaÃÃo abrangente do desempenho de cada algoritmo à feito com base na anÃlise dos resÃduos e testes de hipÃteses sÃo executados para verificar se hà diferenÃas significativas entre os desempenhos dos melhores algoritmos.

Page generated in 0.1097 seconds