• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Analysis of Ledoit's Covariance Matrix and Comparative Adjustment Liability Model (CALM) Within the Markowitz Framework

McArthur, Gregory D 09 May 2014 (has links)
Estimation of the covariance matrix of asset returns is a key component of portfolio optimization. Inherent in any estimation technique is the capacity to inaccurately reflect current market conditions. Typical of Markowitz portfolio optimization theory, which we use as the basis for our analysis, is to assume that asset returns are stationary. This assumption inevitably causes an optimized portfolio to fail during a market crash since estimates of covariance matrices of asset returns no longer reflect current conditions. We use the market crash of 2008 to exemplify this fact. A current industry-standard benchmark for estimation is the Ledoit covariance matrix, which attempts to adjust a portfolio’s aggressiveness during varying market conditions. We test this technique against the CALM (Covariance Adjustment for Liability Management Method), which incorporates forward-looking signals for market volatility to reduce portfolio variance, and assess under certain criteria how well each model performs during recent market crash. We show that CALM should be preferred against the sample convariance matrix and Ledoit covariance matrix under some reasonable weight constraints.
2

Comparative Analysis of Ledoit's Covariance Matrix and Comparative Adjustment Liability Management (CALM) Model Within the Markowitz Framework

Zhang, Yafei 08 May 2014 (has links)
Estimation of the covariance matrix of asset returns is a key component of portfolio optimization. Inherent in any estimation technique is the capacity to inaccurately reflect current market conditions. Typical of Markowitz portfolio optimization theory, which we use as the basis for our analysis, is to assume that asset returns are stationary. This assumption inevitably causes an optimized portfolio to fail during a market crash since estimates of covariance matrices of asset returns no longer re ect current conditions. We use the market crash of 2008 to exemplify this fact. A current industry standard benchmark for estimation is the Ledoit covariance matrix, which attempts to adjust a portfolio's aggressiveness during varying market conditions. We test this technique against the CALM (Covariance Adjustment for Liability Management Method), which incorporates forward-looking signals for market volatility to reduce portfolio variance, and assess under certain criteria how well each model performs during recent market crash. We show that CALM should be preferred against the sample convariance matrix and Ledoit covariance matrix under some reasonable weight constraints.

Page generated in 0.3716 seconds