• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade e o papel do limite N -> infinito na dinâmica dos zeros de Lee-Yang / Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality and the role of the N -> infinity limit for the Lee-Yang zeros´s dynamics

Conti, William Remo Pedroso 11 June 2008 (has links)
Neste trabalho estabelecemos o Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade via equação a derivadas parciais no limite N -> infinito. Por simplicidade consideramos apenas o caso d = 4, sendo o teorema também válido para d > 4. Pelo estudo de uma dada equação a derivadas parciais (EDP) determinamos a temperatura inversa crítica do modelo esférico hierárquico contínuo para um d > 2 qualquer, havendo conexão entre criticalidade e o ponto fixo da EDP. Por meio de uma análise geométrica da trajetória crítica obtemos informações sobre a dinâmica e distribuição dos zeros de Lee-Yang. / In this work we stablish the Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality via partial differential equation in the limit N -> infinity. For simplicity we only treat the d = 4 case but the theorem is still valid for d > 4. By studying a given partial differential equation (PDE) we determine for any d > 2 the critical inverse temperature of the continuum hierarchical spherical model, and we show a connection between criticality and the fixed point of PDE. By means of a geometric analysis of the critical trajectory we obtain some informations about Lee-Yang zeros´s dynamics and distribution.
2

Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade e o papel do limite N -> infinito na dinâmica dos zeros de Lee-Yang / Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality and the role of the N -> infinity limit for the Lee-Yang zeros´s dynamics

William Remo Pedroso Conti 11 June 2008 (has links)
Neste trabalho estabelecemos o Teorema Central do Limite para o modelo O(N) de Heisenberg hierárquico na criticalidade via equação a derivadas parciais no limite N -> infinito. Por simplicidade consideramos apenas o caso d = 4, sendo o teorema também válido para d > 4. Pelo estudo de uma dada equação a derivadas parciais (EDP) determinamos a temperatura inversa crítica do modelo esférico hierárquico contínuo para um d > 2 qualquer, havendo conexão entre criticalidade e o ponto fixo da EDP. Por meio de uma análise geométrica da trajetória crítica obtemos informações sobre a dinâmica e distribuição dos zeros de Lee-Yang. / In this work we stablish the Central Limit Theorem for the hierarchical O(N) Heisenberg model at criticality via partial differential equation in the limit N -> infinity. For simplicity we only treat the d = 4 case but the theorem is still valid for d > 4. By studying a given partial differential equation (PDE) we determine for any d > 2 the critical inverse temperature of the continuum hierarchical spherical model, and we show a connection between criticality and the fixed point of PDE. By means of a geometric analysis of the critical trajectory we obtain some informations about Lee-Yang zeros´s dynamics and distribution.
3

A DYNAMICAL APPROACH TO THE POTTS MODEL ON CAYLEY TREE

Diyath Nelaka Pannipitiya (20329893) 10 January 2025 (has links)
<p dir="ltr">The Ising model is one of the most important theoretical models in statistical physics, which was originally developed to describe ferromagnetism. A system of magnetic particles, for example, can be modeled as a linear chain in one dimension or a lattice in two dimensions, with one particle at each lattice point. Then each particle is assigned a spin $\sigma_i\in \{\pm 1\}$. The $q$-state Potts model is a generalization of the Ising model, where each spin $\sigma_i$ may take on $q\geq 3$ a number of states $\{0,\cdots, q-1\}$. Both models have temperature $T$ and an externally applied magnetic field $h$ as parameters. Many statistical and physical properties of the $q$-~state Potts model can be derived by studying its partition function. This includes phase transitions as $T$ and/or $h$ are varied.</p><p><br></p><p dir="ltr">The celebrated \textit{Lee-Yang Theorem} characterizes such phase transitions of the $2$-state Potts model (the Ising model). This theorem does not hold for $q>2$. Thus, phase transitions for the Potts model as $h$ is varied are more complicated and mysterious. We give some results that characterize the phase transitions of the $3$-state Potts model as $h$ is varied for constant $T$ on the binary rooted Cayley tree. Similarly to the Ising model, we show that for fixed $T>0$ the $3$-state Potts model for the ferromagnetic case exhibits a phase transition at one critical value of $h$ or not at all, depending on $T$. However, an interesting new phenomenon occurs for the $3$-state Potts model because the critical value of $h$ can be non-zero for some range of temperatures. The $3$-state Potts model for the antiferromagnetic case exhibits a phase transition at up to two critical values of $h$. </p><p><br></p><p dir="ltr">The recursive constructions of the $(n+1)^{st}$ level Cayley tree from two copies of the $n^{th}$ level Cayley tree allows one to write a relatively simple rational function relating the Lee-Yang zeros at one level to the next. This allows us to use techniques from dynamical systems.</p>

Page generated in 0.0415 seconds