• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predictive analytics for emergency department patient flow in regards to incoming rate, admission, and leaving behaviour

Manchukonda, Harish Kumar 01 May 2020 (has links)
In this work, we produce several prediction models for aspects of hospital emergency departments. Firstly, we demonstrate the use of a recurrent neural network to predict the rate of patient arrival at a hospital emergency department. The prediction is made on a per hour basis using date, time, calendar, and weather information. Then, we present our comparison of two prediction systems on the task of replicating the human decisions of patient admittance in a typical American emergency department. Again, a recurrent neural network (RNN) was trained to learn the task of selecting the next patient from the waiting room/queue to be admitted for treatment. Lastly, we present our attempt to produce a regression model that can predict the likelihood that a given patient will leave after waiting a specific amount of time in the emergency department’s waiting-room/queue. Such a model could be used to optimize the patient’s waiting-room/queue of an ED to minimize the likelihood of patients leaving without receiving care.

Page generated in 0.0971 seconds