Spelling suggestions: "subject:"legged balking"" "subject:"legged calking""
1 |
Bipedal Robotic Walking on Flat-Ground, Up-Slope and Rough Terrain with Human-Inspired Hybrid Zero DynamicsNadubettu Yadukumar, Shishir 1986- 14 March 2013 (has links)
The thesis shows how to achieve bipedal robotic walking on flat-ground, up-slope and rough terrain by using Human-Inspired control. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot, AMBER, and considering the special property of the motors used in the robot, i.e., low leakage inductance, we approximate the motor model and use the formal controllers that satisfy the constraints and translate into an efficient voltage-based controller that can be directly implemented on AMBER. The end result is walking on flat-ground and up-slope which is not just human-like, but also amazingly robust. Having obtained walking on specific well defined terrains separately, rough terrain walking is achieved by dynamically changing the extended canonical walking functions (ECWF) that the robot outputs should track at every step. The state of the robot, after every non-stance foot strike, is actively sensed and the new CWF is constructed to ensure Hybrid Zero Dynamics is respected in the next step. Finally, the technique developed is tried on different terrains in simulation and in AMBER showing how the walking gait morphs depending on the terrain.
|
2 |
Čtyřnohý kráčejicí robot / Four legged walking robotVeleba, Tomáš January 2008 (has links)
The diploma paper deal with control problems of a four legged walking robot. They endeavour to establish and partly implement the walking and control algorithms. They are divided into six parts. Individual chassis types and their advantages and drawbacks are analysed in introduction. Next part describes mechanical design of the robot and also all realised electronics facilities. The third part describes in detail sensors that are used by the robot. Following part deals with description of robot's walking. It explains individual walking phases and analyses both static and dynamic stability. Next part contains description of the robot's software facility. The software facility of the control micro-controller and the algorithm that generates walking are explained in this part. It also describes software facility of control application in computer. Exploration of the possibilities for wireless control is carried out in the last part.
|
3 |
Čtyřnohý kráčejicí robot / Four legged walking robotFischer, Jan January 2008 (has links)
The object of this thesis is an analysis of the possibilities of a wireless communication and a sensor‘s equipment for a four legged walking robot. The thesis is divided into three parts. In the first part there is a particular sale’s exploration in the section of the wireless communication modules. It refers to the differences among technologies in the methods of signal transmission, the technical parameters but also in the communication protocols. The next part of this thesis is focused on sensor’s equipment with the accent on the possibility of use for a four legged walking robot. It contains a short listing of sensors, which are available in the Czech Republic with division based on the type of sensing magnitude. These two parts make a base for the last part where I have chosen suitable communication modules along with sensors and realization wireless data transfer including control and visualization. The result of this thesis is the complete communication block from the user to the robot.
|
Page generated in 0.0469 seconds