• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The efficiency of legume inoculation for Arizona soils

Hawkins, R. S. (Ralph Sams), 1888- January 1922 (has links)
No description available.
2

Modeling ecological determinants of the symbiotic performance of introduced rhizobia in tropical soils

Thies, Janice E January 1990 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1990. / Includes bibliographical references (leaves 164-173) / Microfiche. / xi, 173 leaves, bound ill. 29 cm
3

The Efficiency of Legume Inoculation for Arizona Soils

Hawkins, R. S. 01 May 1923 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
4

Effect of rhizobium inoculation, molybdenum and lime on the growth and N2 fixation in P. vulgaris L

Bambara, Sylvie Karumeyi January 2009 (has links)
Thesis (MTech (Horticulture Science))--Cape Peninsula University of Technology, 2009 / The study used common bean (P. vulgaris L. variety Provider) in a spilt-split-plot design involving 2 levels of Rhizobium inoculation (with and without rhizobia), 3 levels of lime (0, 2 and 3 t.ha-1) and 3 levels of molybdenum (0, 6 and 12 g.kg-1 of seeds) in a glasshouse experiment. The glasshouse experiment was then verified in the field during 2008 and 2009 cropping seasons. The aim was to assess the effects of Rhizobium inoculation, molybdenum and lime supply on: i) yield and yield components of the P. vulgaris L. ii) Changes in soil pH and the concentrations of selected plant-available nutrients in the rhizosphere, iii) photosynthesis and chlorophyll formation in P. vulgaris L. and (iv) plant growth and N2-fixation in P. vulgaris L. The results showed that Rhizobium inoculation had significant effects in increasing yield components and ultimately the final seed yield. Rhizobial inoculation also significantly increased the levels of chlorophyll content in leaves, improved all photosynthetic parameters, increased dry matter yield of different organs and decreased 15N values in all organs assessed. As a result, % nitrogen derived from atmosphere (%Ndfa) in all organs as well as the amount of N derived from fixation was improved. In the field, the whole plant level of N-fixation of P. vulgaris L. from Rhizobium inoculation accounted for approximately 33 kg N.ha-1. Furthermore, soil pH and the concentration of mineral nutrients (P, K, Ca, Mg, Na, Fe, Cu, Zn and Mn) in the rhizosphere were significantly increased with Rhizobium inoculation when compared with the control.
5

Plant growth and symbiotic functioning of promiscuous-nodulating soybean genotypes inoculated with Bradyrhizobium japonicum strain WB74

Gyogluu, Cynthia. January 2011 (has links)
Thesis (MTech. degree in Agriculture.)--Tshwane University of Technology, 2011. / This study evaluated plant growth and symbiotic performance of four promiscuous-nodulating soybean genotypes and three commercial varieties supplied with a peat-based inoculant of Bradyrhizobium japonicum strain WB74 at three field sites in Mozambique and a pot experiment in South Africa. The sole aim was to assess whether these promiscuous-nodulating soybean genotypes can benefit from inoculation.
6

Assessment of co-inoculation of Bradyrhizobium Japonicum and Bacillus subtilis on yield and metabolic profile of Bambara groundnut and cowpea under glasshouse conditions

Nelwamondo, Aluwani Mutanwa 01 1900 (has links)
Text in English with abstracts in isiVenda and Sepedi / Bambara groundnut and cowpea are essential legumes that are well adapted to unfavourable environmental conditions and have high dietary values for humans. However, they are under-researched and under-utilised. Thus, there are limited records on yields and metabolic profiling of these leguminous crops co-inoculated with B. japonicum and Bacillus subtilis. Generally, very few studies have reported on the effects of co-inoculation of other plant growth-promoting rhizobacteria and rhizobia strains on leguminous plants. This study therefore assessed the effects of B. subtilis (strain BD233) on germination of Bambara groundnut under different temperature regimes, and evaluated the effects of co-inoculation of B. japonicum and B. subtilis on yields of cowpea under glasshouse conditions. The study also assessed the metabolite profile of the crops using 1H nuclear magnetic resonance (NMR) spectroscopy. The data showed that inoculation of Bacillus subtilis on Bambara groundnut landraces under different temperatures enhanced germination (germination percentage, germination rate indices and plumule length). Furthermore, co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) improved plant yield of cowpea plants. Partial least squares-discriminant analysis (PLS-DA) revealed distinct separations between treatments (co-inoculation of B. japonicum and Bacillus subtilis, inoculation of B. japonicum, uninoculated plus NO3 and zero inoculation) on Bambara groundnut and cowpea plants. The VIP score revealed that co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) resulted in low concentrations of metabolites in Bambara groundnut plants and in contrast, high concentrations of metabolites in cowpea plants. Co-inoculation with B. japonicum and Bacillus subtilis (strain BD233) has a potential of improving yield of both Bambara groundnut and cowpea in sustainable agriculture. The metabolic profile of Bambara groundnut and cowpea subjected to co-inoculation has shown that both crops metabolic composition and profile are highly dependent on co-inoculation. / Phonda na ṋawa ndi mangaṋawa a ndeme ane a kona u tea zwavhuḓi kha nyimele dza vhupo vhune ha si vhe havhuḓi na ndeme ya nṱha ya pfushi kha vhathu. Naho zwo ralo, a hu athu u itwa ṱhoḓisiso dzo linganaho nga hadzo na u sa shumiswa Nga zwenezwo hu na rekhodo dzo pimiwaho nga ha khaṋo na u ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza zwiliṅwa izwi zwa mangaṋawa u khetha na B. japonicum na Bacillus subtilis. Nga u angaredza, ndi ngudo dzi si nngana dzo no vhigwaho nga ha masiandaitwa a khetha nyaluwo ya zwimela zwine zwa ṱuṱuwedza bakitheria dzine dza baḓekanywa na midzi na bakitheria dzine dza shandukisa naiṱirodzheni u vha amonia kha zwimela zwa mangaṋawa. Ngudo heyi nga zwenezwo yo asesa masiandaitwa a B. subtilis (tshiliṅwa tsha BD233) kha mumelo wa phonda nga fhasi ha ndaulo ya thempheretsha dzo fhambanaho, na u ela masiandaitwa a u khetha B. japonicum na B. subtilis kha khaṋo dza phonda na ṋawa nga fhasi ha nyimele ya fhethu hune ha ṱavhiwa zwimela nga fhasi ha tsireledzo kana ndangulo. Ngudo dzo dovha dza ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza zwiliṅwa hu tshi shumiswa 1H maanḓa a u tzwonzwiwa ha nyukiḽia nga eḽekiṱhironiki maginethe (NMR) nga u ṱanganelana ha radiesheni ya eḽekiṱhironiki maginethe. Data yo sumbedza u ḓivhadzwa ha Bacillus subtilis kha tshiliṅwa tshapo tsha phonda fhasi ha thempheretsha dzo fhambanaho u khwinisa mumelo (phesenthedzhi ya mumelo, zwisumbi zwa phimo ya muelo na vhulapfu ha pulumule). U isa phanḓa, u ḓivhadzwa hafhu ha B. japonicum na Bacillus subtilis (tshiliṅwa tsha BD233) khaṋo yo khwiniswaho ya tshiliṅwa kha zwimela zwa ṋawa. Musaukanyo wa u khethekanya zwitatisiṱika (Partial least squares-discriminant analysis) (PLS-DA) wo sumbedza khethekanyo dzo fhambanaho vhukati ha kushumisele (u ḓivhadzwa hafhu ha B.japonicum na Bacillus subtilis, u ḓivhadzwa ha B. japonicum, i songo ḓivhadzwaho hafhu na NO3 na ziro i songo ḓivhadzwa hafhu) kha phonda na zwiliṅwa zwa ṋawa. Tshikoro tsha VIP tsho wanulusa uri u ḓivhadzwa hafhu ha B. japonicum na Bacillus subtilis (kha tshiliṅwa tsha BD233) zwo bveledza mutzwonzwo wa fhasi wa methobolaithisi kha zwiliṅwa zwa phonda na phambano, ya mutzwonzwo wa nṱha wa methobolaithisi kha zwiliṅwa zwa ṋawa. U khetha ha B. japonicum na Bacillus subtilis (kha tshiliṅwa tsha BD233) zwo vha na ndeme ya u khwinisa khaṋo ya vhuvhili hazwo phonda na ṋawa kha vhulimi vhu sa nyeṱhi. U ela tshileme tsha molekulu ṱhukhu dza methaboḽiki dza phonda na ṋawa tenda u ḓivhadzwa hafhu ho sumbedza uri vhuvhili ha kubveledzele kwa methaboḽiki ya zwiliṅwa na muelo zwo ḓitika nga maanḓa nga u khetha. / Ditloo tša Bambara ke dipeu tše bohlokwa tšeo di kgonago go phela gabotse go maemo a tikologo yeo e sego ya loka e bile di na le boleng bja godimo bja dijo tšeo di lekanego go batho. Le ge go le bjalo, gona le dinyakišišo tša fase ka tšona le gore ga di šomišwe kudu. Ka gona, go na le direkhoto tše dinnyane ka ga pego ya mehola le tšhomišo ya yona ka ga dibjalo tše tša go dira dipeu tšeo di kopantšhwago le B. japonicum le Bacillus subtilis. Ka kakaretšo, dinyakišišo tše dinnyane kudu di begile ka ga dikhuetšo tša kopantšho ya mehlare e mengwe ya go huetša go gola ga pakteria ya medu (rhizobacteria) le dingangego tša pakteria ya ka gare ga medu (rhizobia) go dibjalo tša dipeu. Nyakišišo ye ka gona e lekotše dikhuetšo tša B. subtilis (strain BD233) go melo ya ditloo tša Bambara ka fase ga maemo a dithempereitšha tša go fapana, le go lekola dikhuetšo tša kopantšho ya B. japonicum le B. subtilis go mehola ya ditloo tša Bambara le dinawa ka fase ga maemo a ntlo ya digalase. Nyakišišo gape e lekotše pego ya tšhomišo ya dibjalo go šomišwa sedirišwa sa go laetša maatlakgogedi sa 1H (NMR). Tshedimošo e bontšhitše gore tsenyo ya Bacillus subtilis go ditloo tša Bambara tša tlwaelo ka fase ga dithempereitšha tša go fapana go kaonafaditše go mela (phesente ya go mela, lebelo la dikelo tša melo le botelele bja kutu ya sebjalo). Gape, kopantšho le B. japonicum le Bacillus subtilis (strain BD233) go kaonafaditše mehola ya dibjalo tša mehlare ya dinawa. Tshekatsheko ya go hwetša tswalano ya dithišu tše pedi (PLS-DS) e utollotše ditlogelano tša go fapana magareng ga mekgwa (kopantšho ya B. japonicum le Bacillus subtilis, tsenyo ya B. japonicum, yeo e sego ya tsenywa le NO3 le tsenyo ya lefeela) go ditloo tša Bambara le dibjalo tša dinawa. Dipoelo tša VIP di utollotše gore kopantšho ya B. japonicum le Bacillus subtilis (strain BD233) e tlišitše dipoelo tša fase tša ditšweletšwa tša dimolekule tša dibjalo tša ditloo tša Bambara e bile gape ge re dira phapanyo, bontšhi bjo bo lego godimo bja ditšweletšwa tša dimolekule ka go dibjalo tša dinawa. Kopantšho ya B. japonicum le Bacillus subtilis (strain BD233) e na le kgonagalo ya go kaonafatša mehola ya bobedi ditloo tša Bambara le dinawa ka go temo ya sa ruri. Seemo sa ditšweletšwa tša ditloo tša Bambara le dinawa tšeo di dirilwe kopantšho se bontšhitše gore bobedi tlhamotšweletšo le seemo sa dibjalo tše di ithekgile kudu mo go kopantšho. / Agriculture and  Animal Health / M. Sc. (Agriculture)
7

Evidence for Multiple Functions of a Medicago Truncatula Transporter

Huang, Ying-Sheng 12 1900 (has links)
Legumes play an important role in agriculture as major food sources for humans and as feed for animals. Bioavailable nitrogen is a limiting nutrient for crop growth. Legumes are important because they can form a symbiotic relationship with soil bacteria called rhizobia that results in nitrogen-fixing root nodules. In this symbiosis, rhizobia provide nitrogen to the legumes and the legumes provide carbon sources to the rhizobia. The Medicago truncatula NPF1.7/NIP/LATD gene is essential for root nodule development and also for proper development of root architecture. Work in our lab on the MtNPF1.7/MtNIP/LATD gene has established that it encodes a nitrate transporter and strongly suggests it has another function. Mtnip-1/latd mutants have pleiotropic defects, which are only partially explained by defects in nitrate transport. MtNPF1.7/NIP/LATD is a member of the large and diverse NPF/NRT1(PTR) transporter family. NPF/NRT1(PTR) members have been shown to transport other compounds in addition to nitrate: nitrite, amino acids, di- and tri-peptides, dicarboxylates, auxin, abscisic acid and glucosinolates. In Arabidopsis thaliana, the AtNPF6.3/NRT1.1( CHL1) transporter was shown to transport auxin as well as nitrate. Atchl1 mutants have defects in root architecture, which may be explained by defects in auxin transport and/or nitrate sensing. Considering the pleiotropic phenotypes observed in Mtnip-1/latd mutant plants, it is possible that MtNPF1.7/NIP/LATD could have similar activity as AtNPF6.3/NRT1.1(CHL1). Experimental evidence shows that the MtNPF1.7/NIP/LATD gene is able to restore nitrate-absent responsiveness defects of the Atchl1-5 mutant. The constitutive expression of MtNPF1.7/NIP/LATD gene was able to partially, but not fully restore the wild-type phenotype in the Atchl1-5 mutant line in response to auxin and cytokinin. The constitutive expression of MtNPF1.7/NIP/LATD gene affects the lateral root density of wild-type Col-0 plants differently in response to IAA in the presence of high (1mM) or low (0.1 mM) nitrate. MtNPF1.7/NIP/LATD gene expression is not regulated by nitrate at the concentrations tested and MtNPF1.7/NIP/LATD does not regulate the nitrate-responsive MtNRT2.1 gene. Mtnip-1 plants have an abnormal gravitropic root response implicating an auxin defect. Together with these results, MtNPF1.7/NIP/LATD is associated with nitrate and auxin; however, it does not act in a homologous fashion as AtNPF6.3/NRT1.1(CHL1) does in A. thaliana.

Page generated in 0.1206 seconds