• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification and estimation of nitrous oxide emissions from dairy manure applications in a western Quebec pea-forage and an eastern Ontario alfalfa-forage cropping system : by Lynda G. Blackburn.

Blackburn, Lynda G. January 2006 (has links)
No description available.
2

Quantification and estimation of nitrous oxide emissions from dairy manure applications in a western Quebec pea-forage and an eastern Ontario alfalfa-forage cropping system : by Lynda G. Blackburn.

Blackburn, Lynda G. January 2006 (has links)
Agricultural systems are known to emit nitrous oxide (N2O)---a potent greenhouse gas. The roving flux tower measuring system of Agriculture and Agri-Food Canada was used to make continuous measurements of N2O fluxes in an edible pea field in Western Quebec in 2003-04 and then in an alfalfa-timothy forage field in Eastern Ontario in 2004-05. The experiment was designed to capture, at the field scale, the expected large N2O emissions occurring as a result of fertilizer application for a year, in relation to both large precipitation events and spring thaw. / Growing season N2O emissions averaged 0.5 to 5 mg N2 O-N m-2 d-1 with peaks following snow melt (between 5 and 8 mg N2O-N m-2 d-1) and manure applications (8 to 37 mg N2O-N m-2 d -1). Although generally small (<0.25 mg N2O-N m -2 d-1), emissions were detectable during the fall and winter, indicating the importance of including them in annual emission totals. / The measurements were used to verify the performance of the simulation model DNDC (DeNitrification-DeComposition) in estimating N2O emissions from legumes and in response to dairy manure application. Sensitivity tests were also carried out in which baseline input values were modified. Results suggest that the current model version (DNDC8.9) requires further modification prior to application for estimating greenhouse gas emissions in national accounting systems.

Page generated in 0.0416 seconds