Spelling suggestions: "subject:"messkomposition"" "subject:"messenkomposition""
1 |
Establishment of cell culture and characterization of seed coat pigments of vigna sinensis.January 2000 (has links)
Yip Mei-kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 93-102). / Abstracts in English and Chinese. / Acknowledgments --- p.i / List of abbreviations --- p.ii / Abstract --- p.iii / Table of Contents --- p.vi / List of tables --- p.x / List of figures --- p.xii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Plant of interest --- p.1 / Chapter 1.2 --- Literature review --- p.2 / Chapter 1.2.1 --- Anthocyanins-natural pigments in plants --- p.2 / Chapter 1.2.1.1 --- Sources and biosynthesis --- p.2 / Chapter 1.2.1.2 --- Chemical properties --- p.2 / Chapter 1.2.1.3 --- Biological effects --- p.3 / Chapter 1.2.2 --- Characterization of anthocyanins --- p.4 / Chapter 1.2.3 --- Plant tissue and cell cultures --- p.6 / Chapter 1.2.4 --- Induction of anthocyanins in plant tissue culture --- p.7 / Chapter 1.2.5 --- Factors affecting anthocyanin production --- p.8 / Chapter 1.2.5.1 --- Plant hormones --- p.8 / Chapter 1.2.5.2 --- Nutrients --- p.9 / Chapter 1.2.5.2.1 --- Phosphate --- p.9 / Chapter 1.2.5.2.2 --- Nitrogen --- p.9 / Chapter 1.2.5.3 --- Osmoticums --- p.10 / Chapter 1.2.5.3.1 --- Sucrose --- p.10 / Chapter 1.2.5.3.2 --- Other factors --- p.10 / Chapter 1.3 --- Research objectives --- p.12 / Chapter 2. --- Materials and methods --- p.16 / Chapter 2.1 --- Plant materials --- p.16 / Chapter 2.2 --- Study of pigment formation at different developmental stages --- p.16 / Chapter 2.2.1 --- Cultivation of Vigna sinensis --- p.16 / Chapter 2.2.2 --- Sample collection --- p.16 / Chapter 2.2.3 --- HPLC analysis of pigmented vegetative tissues --- p.16 / Chapter 2.2.4 --- HPLC analysis of seed coats at different developmental stages --- p.17 / Chapter 2.3 --- Characterization of seed coat pigments --- p.17 / Chapter 2.3.1 --- Extraction of seed coats pigments --- p.17 / Chapter 2.3.2 --- Acid hydrolysis of anthocyanins --- p.17 / Chapter 2.3.3 --- High performance liquid chromatography --- p.18 / Chapter 2.3.3.1 --- HPLC system --- p.18 / Chapter 2.3.3.2 --- Analytical conditions --- p.18 / Chapter 2.4 --- Establishment of tissue culture system --- p.19 / Chapter 2.4.1 --- Aseptic plant stocks --- p.19 / Chapter 2.4.2 --- Shoot-tip cultures --- p.19 / Chapter 2.4.3 --- Callus initiation --- p.19 / Chapter 2.4.3.1 --- From seed coats --- p.20 / Chapter 2.4.3.2 --- From vegetative tissues --- p.20 / Chapter 2.4.3.3 --- Light and dark --- p.20 / Chapter 2.4.4 --- Optimization of callus growth --- p.21 / Chapter 2.4.4.1 --- Basal medium --- p.21 / Chapter 2.4.4.2 --- Combination of various plant hormones --- p.21 / Chapter 2.4.4.3 --- Basal salt --- p.21 / Chapter 2.5 --- Studies of anthocyanin production in hypocotyl callus cultures --- p.22 / Chapter 2.5.1 --- Effects of nutrients --- p.22 / Chapter 2.5.1.1 --- Nitrogen --- p.22 / Chapter 2.5.1.2 --- Phosphate --- p.22 / Chapter 2.5.2 --- Osmotic stress --- p.22 / Chapter 2.5.2.1 --- Sucrose --- p.22 / Chapter 2.5.2.2 --- Mannitol --- p.23 / Chapter 2.5.2.3 --- Sodium chloride --- p.23 / Chapter 2.5.2.4 --- Polyethylene glycol --- p.23 / Chapter 2.6 --- Studies of anthocyanin production in cell suspension cultures --- p.23 / Chapter 2.6.1 --- Effects of nutrients --- p.24 / Chapter 2.6.1.1 --- Nitrogen --- p.24 / Chapter 2.6.1.2 --- Phosphate --- p.24 / Chapter 2.6.2 --- Osmotic stress --- p.25 / Chapter 2.6.2.1 --- Sucrose --- p.25 / Chapter 2.6.2.2 --- Polyethylene glycol --- p.25 / Chapter 2.6.3 --- Effects of other factors --- p.25 / Chapter 2.6.3.1 --- Riboflavin --- p.25 / Chapter 2.6.3.2 --- pH --- p.26 / Chapter 2.7 --- Measurement of cell growth --- p.26 / Chapter 2.8 --- Estimation of anthocyanins --- p.26 / Chapter 2.9 --- Statistical analysis --- p.27 / Chapter 3. --- Results --- p.30 / Chapter 3.1 --- Study of pigment formation at different developmental stages --- p.30 / Chapter 3.1.1 --- General description --- p.30 / Chapter 3.1.2 --- HPLC analysis of developing seed coats and other vegetative tissues --- p.30 / Chapter 3.1.3 --- The relationship between pigment formation and seed development --- p.30 / Chapter 3.2 --- Characterization of seed coat pigments --- p.31 / Chapter 3.3 --- Establishment of tissue culture system --- p.43 / Chapter 3.3.1 --- Callus initiations from seed coats --- p.43 / Chapter 3.3.2 --- Callus initiations from vegetative tissues --- p.43 / Chapter 3.3.3 --- Optimization of callus growth --- p.43 / Chapter 3.3.3.1 --- Effects of NAA and BA --- p.43 / Chapter 3.3.3.2 --- Effects of basal medium and combinations of plant hormones --- p.44 / Chapter 3.3.3.3 --- Effects of basal salt --- p.44 / Chapter 3.4 --- Studies of anthocyanin production in hypocotyl callus culture --- p.54 / Chapter 3.4.1 --- Effects of nutrients --- p.54 / Chapter 3.4.1.1 --- Effects of total nitrogen --- p.54 / Chapter 3.4.1.2 --- Effects of phosphate --- p.54 / Chapter 3.4.2 --- Effects of plant hormones --- p.55 / Chapter 3.4.3 --- Osmotic stress --- p.55 / Chapter 3.5 --- Establishment of suspension culture system --- p.64 / Chapter 3.6 --- Studies of anthocyanin production in seed coat suspension cultures --- p.64 / Chapter 3.6.1 --- Nutrient effects on suspension cultures --- p.64 / Chapter 3.6.2 --- Osmotic stress on suspension cultures --- p.65 / Chapter 3.6.3 --- Effects of phosphate with high nitrogen --- p.65 / Chapter 3.6.4 --- Effects of riboflavin with high nitrogen --- p.66 / Chapter 3.6.5 --- Influence of pH with high nitrogen --- p.66 / Chapter 4. --- Discussion --- p.79 / Chapter 4.1 --- Anthocyanin in vegetative tissues and seed coats of Vigna sinensis --- p.79 / Chapter 4.2 --- Factors affecting callus initiation in Vigna sinensis --- p.81 / Chapter 4.2.1 --- Explant types --- p.81 / Chapter 4.2.2 --- Plant hormones --- p.82 / Chapter 4.2.3 --- Basal medium --- p.82 / Chapter 4.3 --- Factors affecting anthocyanin production in callus cultures derived from hypocotyls --- p.83 / Chapter 4.3.1 --- Nutrients --- p.83 / Chapter 4.3.2 --- Osmotic stress --- p.85 / Chapter 4.4 --- Factors affecting anthocyanin production in suspension culture derived from seed coats --- p.86 / Chapter 4.4.1 --- Nutrients --- p.86 / Chapter 4.4.2 --- Osmotic stress --- p.87 / Chapter 4.5 --- Comparison of anthocyanin production from natural source and plant tissue cultures of V.sinensis --- p.89 / Chapter 4.6 --- Further studies --- p.89 / Chapter 5. --- Conclusions --- p.91 / References --- p.93
|
2 |
The antiproliferative activity of hakmeitau bean (Vigna sinensis) extract.January 2004 (has links)
Lau Wing-Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 131-149). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abstract (Chinese version) --- p.iv / Table of Contents --- p.vi / List of Tables --- p.x / List of Figures --- p.xii / List of Abbreviations --- p.xiv / Chapter Chapter One: --- An overview of Vigna sinensis seeds / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Food and functional food --- p.2 / Chapter 1.3 --- Edible legumes as an important food --- p.4 / Chapter 1.4 --- Nutritional an extra-nutritional values of V. sinensis seeds --- p.5 / Chapter Chapter Two: --- Purification of phenolic antioxidants from V. sinensis seeds / Chapter 2.1 --- Introduction --- p.11 / Chapter 2.1.1 --- Reactive oxygen species and antioxidants --- p.12 / Chapter 2.1.2 --- Phenolic flavonoids --- p.15 / Chapter 2.2 --- Materials and Methods / Chapter 2.2.1 --- Chemicals and reagents --- p.24 / Chapter 2.2.2 --- Plant material --- p.25 / Chapter 2.2.3 --- Optimization and extraction of V. sinensis seeds constituents --- p.25 / Chapter 2.2.4 --- Chromatographic separation of phenolic components --- p.26 / Chapter 2.2.5 --- Determination of phenolic contents --- p.27 / Chapter 2.2.6 --- Determination of free radical scavenging ability using trolox equivalent antioxidant capacity (TEAC) assay --- p.28 / Chapter 2.2.7 --- Statistical analysis --- p.29 / Chapter 2.3 --- Results and Discussion / Chapter 2.3.1 --- Optimization on the extraction of V. sinensis seeds --- p.30 / Chapter 2.3.2 --- Extraction and fractionation of V. sinensis seeds constituents --- p.31 / Chapter 2.3.3 --- Yield of various V sinensis seed fractions --- p.31 / Chapter 2.3.4 --- Phenolic contents in various V. sinensis seed fractions --- p.32 / Chapter 2.3.5 --- Free radical scavenging abilities of various V sinensis seed fractions --- p.33 / Chapter Chapter Three: --- Effect of V. sinensis seed extract on high fat and cholesterol - feeding mice / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.1.1 --- Cholesterol in bloodstream circulation --- p.42 / Chapter 3.1.2 --- "Relationship between LDL oxidation, atherosclerosis and coronary heart disease" --- p.43 / Chapter 3.1.3 --- Diet supplements with beneficial effects on preventing coronary heart disease --- p.44 / Chapter 3.2 --- Materials and Methods --- p.47 / Chapter 3.2.1 --- Chemicals and reagents --- p.47 / Chapter 3.2.2 --- Preparation of diets --- p.48 / Chapter 3.2.3 --- Animals --- p.48 / Chapter 3.2.4 --- Feeding experiments --- p.49 / Chapter 3.2.5 --- Post-feeding analysis --- p.50 / Chapter 3.2.5.1 --- Caecal content and health indices --- p.50 / Chapter 3.2.5.2 --- Serum triglycerides --- p.51 / Chapter 3.2.5.3 --- Serum total cholesterol --- p.52 / Chapter 3.2.5.4 --- High-density lipoprotein (HDL) cholesterol --- p.53 / Chapter 3.2.5.5 --- Low-density lipoprotein (LDL) cholesterol --- p.54 / Chapter 3.2.5.6 --- Hepatic lipid and cholesterol --- p.55 / Chapter 3.2.6 --- Statistical analysis --- p.55 / Chapter 3.3 --- Results and Discussion --- p.56 / Chapter 3.3.1 --- Food intakes and body weights of animals --- p.56 / Chapter 3.3.2 --- Caecal contents and health indices --- p.56 / Chapter 3.3.3 --- Effects of V sinensis seed extract on serum and hepatic levels of triglycerides and cholesterol --- p.57 / Chapter Chapter Four: --- Antiproliferative activities of V. sinensis seed extracts / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.1.1 --- Cancer and antioxidant --- p.67 / Chapter 4.1.2 --- Dietary cancer prevention agents --- p.68 / Chapter 4.2 --- Materials and Methods --- p.71 / Chapter 4.2.1 --- Chemicals and reagents --- p.71 / Chapter 4.2.2 --- Cell lines --- p.71 / Chapter 4.2.3 --- Maintenance of cell lines --- p.72 / Chapter 4.2.4 --- Antiproliferation assays --- p.73 / Chapter 4.2.4.1 --- MTT assay --- p.73 / Chapter 4.2.4.2 --- BrdU assay --- p.73 / Chapter 4.2.5 --- Cytotoxic activity determined by lactate dehydrogenase (LDH) assay --- p.77 / Chapter 4.2.6 --- Time-course assay --- p.79 / Chapter 4.2.7 --- Determination of IC50 --- p.79 / Chapter 4.2.8 --- Statistical analysis --- p.79 / Chapter 4.3 --- Results and Discussion --- p.80 / Chapter 4.3.1 --- Antiproliferative activities of V. sinensis seed extracts on HepG2 cells --- p.80 / Chapter 4.3.2 --- Cytotoxic activities of V. sinensis seed extracts on HepG2 cells --- p.82 / Chapter 4.3.3 --- Antiproliferative activities of phenolic fraction on MCF-7cells --- p.83 / Chapter 4.3.4 --- Cytotoxic activity of phenolic fraction on MCF-7 cells --- p.84 / Chapter 4.3.5 --- Time-course study of antiproliferative activities of phenolic fraction on cancer cells --- p.85 / Chapter 4.3.6 --- Effect of phenolic fraction on normal cells --- p.86 / Chapter Chapter Five: --- Antioxidant and antiproliferative activities of selected content flavonoids from V. sinensis seeds / Chapter 5.1 --- Introduction --- p.93 / Chapter 5.1.1 --- Cell cycle progression and regulation --- p.94 / Chapter 5.1.2 --- Bioavailability of plant flavonoids --- p.96 / Chapter 5.1.3 --- Characterization of flavonoids in V. sinensis seed --- p.98 / Chapter 5.2 --- Materials and Methods --- p.102 / Chapter 5.2.1 --- Chemicals and reagents --- p.102 / Chapter 5.2.2 --- Determination of free radical scavenging ability of identified flavonoids from V sinensis seeds using trolox equivalent antioxidant capacity (TEAC) assay --- p.103 / Chapter 5.2.3 --- Antiproliferation assays --- p.104 / Chapter 5.2.4 --- Cytotoxicity assay --- p.104 / Chapter 5.2.5 --- Time-course assay --- p.104 / Chapter 5.2.6 --- Determination of cell cycle distribution by flow cytometry --- p.105 / Chapter 5.2.7 --- Statistical analysis --- p.106 / Chapter 5.3 --- Results and Discussion --- p.107 / Chapter 5.3.1 --- Free radical scavenging abilities of identified flavonoids from V sinensis seeds --- p.107 / Chapter 5.3.2 --- Antiproliferative activities of selected flavonoids on cancer cells --- p.109 / Chapter 5.3.3 --- Cytotoxic activities of selected flavonoids on cancer cells --- p.111 / Chapter 5.3.4 --- Time -course study of antiproliferative activities on cancer cells --- p.112 / Chapter 5.3.5 --- Cytotoxic activities of selected flavonoids on normal cells --- p.114 / Chapter 5.3.6 --- Determination of the effects of cyanidin on cancer cells by analyzing cell cycle pattern --- p.115 / Chapter Chapter Six: --- Conclusion --- p.128 / References --- p.131
|
3 |
Biochemical composition, protein quality and hypocholesterolemic effect of mature seeds of a pigmented Vigna sinensis cultivar.January 1999 (has links)
by Foo Wai Ting, Rita. / Thesis submitted in: August 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 89-100). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Proximate Composition --- p.4 / Chapter 1.2 --- Amino Acid Composition --- p.6 / Chapter 1.3 --- Antinutrients --- p.11 / Chapter 1.3.1 --- Trypsin Inhibitors --- p.12 / Chapter 1.3.2 --- Phytate --- p.13 / Chapter 1.3.3 --- Tannins --- p.14 / Chapter 1.3.4 --- Lectins --- p.15 / Chapter 1.4 --- Two Dimensional Polyacrylamide Gel Electrophoresis --- p.17 / Chapter 1.5 --- Protein Digestibility --- p.19 / Chapter 1.6 --- Protein Quality --- p.22 / Chapter 1.7 --- Hypocholesterolemic Effects --- p.24 / Chapter 2 --- Materials and Methods --- p.36 / Chapter 2.1 --- Plant Material --- p.36 / Chapter 2.2 --- Sample preparation --- p.36 / Chapter 2.3 --- Proximate composition --- p.38 / Chapter 2.3.1 --- Protein --- p.38 / Chapter 2.3.2 --- Fat --- p.38 / Chapter 2.3.3 --- Carbohydrate --- p.38 / Chapter 2.3.4 --- Fiber --- p.38 / Chapter 2.3.5 --- Mineral --- p.39 / Chapter 2.3.6 --- Moisture --- p.39 / Chapter 2.4 --- Amino acid composition --- p.40 / Chapter 2.5 --- Antinutrients --- p.41 / Chapter 2.5.1 --- Trypsin inhibitors --- p.41 / Chapter 2.5.2 --- Tannins --- p.42 / Chapter 2.5.3 --- Phytate --- p.43 / Chapter 2.5.4 --- Lectins --- p.43 / Chapter 2.6 --- Two dimensional polyacrylamide gel electrophoresis --- p.45 / Chapter 2.6.1 --- Protein extraction --- p.45 / Chapter 2.6.2 --- IEF gel --- p.45 / Chapter 2.6.3 --- SDS gel --- p.46 / Chapter 2.7 --- Protein digestibility --- p.48 / Chapter 2.7.1 --- In vitro Protein digestibility --- p.48 / Chapter 2.7.2 --- True Protein digestibility --- p.49 / Chapter 2.8 --- Protein quality --- p.51 / Chapter 2.9 --- Hypocholesterolemic effects --- p.52 / Chapter 2.10 --- Statistical analysis --- p.55 / Chapter 3 --- Results --- p.56 / Chapter 3.1 --- Proximate composition --- p.56 / Chapter 3.2 --- Amino acid composition --- p.56 / Chapter 3.3 --- Antinutrients --- p.56 / Chapter 3.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.60 / Chapter 3.5 --- Protein digestibility --- p.60 / Chapter 3.6 --- Protein quality --- p.60 / Chapter 3.7 --- Hypocholesterolemic effects --- p.62 / Chapter 3.7.1 --- Growth rate against day --- p.62 / Chapter 3.7.2 --- Health indexes --- p.64 / Chapter 3.7.3 --- Cholesterol content --- p.64 / Chapter 4 --- Discussion --- p.67 / Chapter 4.1 --- Proximate composition --- p.67 / Chapter 4.2 --- Amino acid composition --- p.70 / Chapter 4.3 --- Antinutrients --- p.74 / Chapter 4.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.77 / Chapter 4.5 --- Protein digestibility --- p.79 / Chapter 4.6 --- Protein quality --- p.81 / Chapter 4.7 --- Hypocholesterolemic effects --- p.82 / Chapter 5 --- Conclusion --- p.88 / References --- p.89
|
Page generated in 0.0948 seconds