• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The stabilizer of the group determinant and bounds for Lehmer's conjecture on finite abelian groups

Vipismakul, Wasin 23 October 2013 (has links)
Given a finite group G of cardinality N, the group determinant [theta]G associated to G is a homogeneous polynomial in N variables of degree N. We study two properties of [theta]G. First we determine the stabilizer of [theta](G) under the action of permuting its variables. Then we also prove that the Lehmer's constant for any finite abelian group must satisfy a system of congruence equations. In particular when G is a p-group, we can strengthen the result to establish upper and lower bounds for the Lehmer's constant. / text
2

A Variant of Lehmer's Conjecture in the CM Case

Laptyeva, Nataliya 08 August 2013 (has links)
Lehmer's conjecture asserts that $\tau(p) \neq 0$, where $\tau$ is the Ramanujan $\tau$-function. This is equivalent to the assertion that $\tau(n) \neq 0$ for any $n$. A related problem is to find the distribution of primes $p$ for which $\tau(p) \equiv 0 \text{ } (\text{mod } p)$. These are open problems. However, the variant of estimating the number of integers $n$ for which $n$ and $\tau(n)$ do not have a non-trivial common factor is more amenable to study. More generally, let $f$ be a normalized eigenform for the Hecke operators of weight $k \geq 2$ and having rational integer Fourier coefficients $\{a(n)\}$. It is interesting to study the quantity $(n,a(n))$. It was proved by S. Gun and V. K. Murty (2009) that for Hecke eigenforms $f$ of weight $2$ with CM and integer coefficients $a(n)$ \begin{equation} \{ n \leq x \text { } | \text{ } (n,a(n))=1\} = \displaystyle\frac{(1+o(1)) U_f x}{\sqrt{\log x \log \log \log x}} \end{equation} for some constant $U_f$. We extend this result to higher weight forms. \\ We also show that \begin{equation} \{ n \leq x \ | (n,a(n)) \text{ \emph{is a prime}}\} \ll \displaystyle\frac{ x \log \log \log \log x}{\sqrt{\log x \log \log \log x}}. \end{equation}
3

A Variant of Lehmer's Conjecture in the CM Case

Laptyeva, Nataliya 08 August 2013 (has links)
Lehmer's conjecture asserts that $\tau(p) \neq 0$, where $\tau$ is the Ramanujan $\tau$-function. This is equivalent to the assertion that $\tau(n) \neq 0$ for any $n$. A related problem is to find the distribution of primes $p$ for which $\tau(p) \equiv 0 \text{ } (\text{mod } p)$. These are open problems. However, the variant of estimating the number of integers $n$ for which $n$ and $\tau(n)$ do not have a non-trivial common factor is more amenable to study. More generally, let $f$ be a normalized eigenform for the Hecke operators of weight $k \geq 2$ and having rational integer Fourier coefficients $\{a(n)\}$. It is interesting to study the quantity $(n,a(n))$. It was proved by S. Gun and V. K. Murty (2009) that for Hecke eigenforms $f$ of weight $2$ with CM and integer coefficients $a(n)$ \begin{equation} \{ n \leq x \text { } | \text{ } (n,a(n))=1\} = \displaystyle\frac{(1+o(1)) U_f x}{\sqrt{\log x \log \log \log x}} \end{equation} for some constant $U_f$. We extend this result to higher weight forms. \\ We also show that \begin{equation} \{ n \leq x \ | (n,a(n)) \text{ \emph{is a prime}}\} \ll \displaystyle\frac{ x \log \log \log \log x}{\sqrt{\log x \log \log \log x}}. \end{equation}

Page generated in 0.077 seconds