• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of nuclear-encoded subunit genes in mitochondrial complex 1 deficiency

Worgan, Lisa Catherine, Women & Children's Health, UNSW January 2005 (has links)
BACKGROUND: Mitochondrial complex I deficiency often leads to a devastating neurodegenerative disorder of childhood. In most cases, the underlying genetic defect is unknown. Recessive nuclear gene mutations, rather than mitochondrial DNA mutations, account for the majority of cases. AIM: Our aim was to identify the genetic basis of complex I deficiency in 34 patients with isolated complex I deficiency, by studying six of the 39 nuclear encoded complex I subunit genes (NDUFV1, NDUFS1, NDUFS2, NDUFS4, NDUFS7 and NDUFS8). These genes have been conserved throughout evolution and carry out essential aspects of complex I function. METHODS: RNA was extracted from patient fibroblasts and cDNA made by reverse transcription. Overlapping amplicons that together spanned the entire coding area of each gene were amplified by PCR. The genes were screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC). Patient samples with abnormal dHPLC profiles underwent direct DNA sequencing. RESULTS: Novel mutations were identified in six of 34 (18%) patients with isolated complex I deficiency. Five patients had two mutations identified and one patient had a single mutation in NDUFS4 identified. All patients with mutations had a progressive encephalopathy and five out of six had Leigh syndrome or Leigh like syndrome. Mutations were found in three nuclear encoded subunit genes, NDUFV1, NDUFS2 and NDUFS4. Three novel NDUFV1 mutations were identified (R386H, K111E and P252R). The R386H mutation was found in two apparently unrelated patients. Four novel NDUFS2 mutations were identified (R221X, M292T, R333Q and IVS9+4A&ltG). The novel NDUFS4 mutation c.221delC was found in two patients - one in homozygous form and the other heterozygous. Specific genotype and phenotype correlations were not identified. CONCLUSIONS: Nuclear encoded complex I subunit gene mutations are an important contributor to the aetiology of isolated complex I deficiency in childhood. Screening of these genes is an essential part of the investigation of complex I deficiency.

Page generated in 0.0292 seconds