• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From intracellular localization to proteolytic cleavage : functional significance of protein tyrosine phosphatase PEST regulatory mechanisms

Hallé, Maxime. January 2008 (has links)
Altered cytoskeletal regulation impacts numerous physiological phenomena: cell motility, apoptosis, oncogenic transformation and parasitic infection. The protein tyrosine phosphatase (PTP)-PEST contains multiple motifs mediating its recruitment to signalling components, and is required for actin filament organization. However, little is known regarding either the importance of PTP-PEST subcellular localization, or the role of PTP-PEST in either parasitic infection or apoptosis. My doctoral research was therefore focussed on elucidating the effect of subcellular distribution on PTP-PEST activity, specifically with respect to regulation of p130Cas (a PTP-PEST substrate), as well as on the involvement of PTP-PEST in both host-pathogen relations and apoptosis. First, PTP-PEST was found both within the cytosol and at the plasma membrane. Using PTP-PEST -/- rescued cell lines, I observed that tyrosine phosphorylation-dependent p130Cas interactions were controlled primarily by cytosolic PTP-PEST. Secondly, infection of fibroblasts with Leishmania major was observed to induce dramatic actin rearrangements, and to alter the phosphorylation state of numerous proteins. Importantly, both PTP-PEST and p130Cas were processed by the parasitic protease GP63 during infection. GP63 was also required for the cleavage of additional host proteins: cortactin, TC-PTP and caspase-3. Of note, Leishmania parasites mediated p38 inactivation, correlating with the proteolysis of its upstream activator TAB1, in a GP63dependent manner. These results indicate that GP63 plays a key role in a number of biochemical events, potentially contributing to Leishmania infectivity. Finally, PTP-PEST was found to relocalize to the edges of retracting membrane ruffles of apoptotic cells. Surprisingly, PTP-PEST was specifically cleaved by caspase-3 at the 549DSPD motif during apoptosis; leading to modification of catalytic activity and scaffolding properties, and sensitizing cells to Fas-mediated detachment. As this data demonstrated a potential role for caspase cleavage in PTP regulation, I also investigated the presence of conserved putative caspase-c1eavage sites in other family members. In summary, the data presented herein links PTP-PEST with various biological processes: oncogenic signalling, host-pathogen interactions, and apoptosis. In addition to demonstrating the involvement of PTP-PEST in diverse signalling pathways, these studies underscore the importance of subcellular localization and proteolysis in the regulation of this PTP.
2

From intracellular localization to proteolytic cleavage : functional significance of protein tyrosine phosphatase PEST regulatory mechanisms

Hallé, Maxime. January 2008 (has links)
No description available.

Page generated in 0.0762 seconds