• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 68
  • 38
  • 32
  • 21
  • 19
  • 12
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 593
  • 70
  • 67
  • 67
  • 49
  • 47
  • 45
  • 41
  • 41
  • 40
  • 36
  • 36
  • 30
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of liquid crystal lens with varying voltage

Chen, Ying-ling 27 July 2006 (has links)
Abstract Tunable-focal length LC lens with hole-patterned electrode have been fabricated in this study. Liquid crystals (LCs) are excellent electro-optic materials with electrical and optical anisotropies. Their optical properties can easily be varied by external electric field. Hence according the electro-optic properties, we made the tunable LC lens. In this study a novel conoscopy method has been applied to analyze the LC lens. First, we study the causes of the focusing and the optical properties of LC lens, and measure the focal length with varying voltage. Second, by analyzing the figure patterns formed with conoscopy method. We study the LC molecules reorientation caused by the inhomogeneous electric field distribution. In order to improve the spoiled effect due to the subsidiary domain in the LC lens, three different structures of LC lens have been fabricated and the focusing effect has been discussed.
2

Developing a liquid crystal lens with tunable focal length and type of focus by controlling the electric field distribution.

Wang, Chun-yu 28 July 2005 (has links)
By using a special design of electrode pattern and the differential biased circuit, the gradient of the electric field distribution inside the liquid crystal sample cell can be achieved through the adjustment of driving voltage. The characteristics of positive or negative types of lens can be converted by changing the polarity of gradient within the sample cell which posses the homogeneous alignment. The liquid crystal lens with a variable focal length and the tunable types of focusing is demonstrated by utilizing the controllable distribution of electric field. This special design incorporating with the fabrication technology of TFT has a potential to develop a large scale of liquid crystal lens.
3

Photographic Fisheye Lens Design for 35mm Format Cameras

Yan, Yufeng January 2016 (has links)
Fisheye lenses refer to ultra-wide angle lenses that have field of view equal or larger than 180 degrees. Such lenses introduce large amount of barrel distortion to capture at least the entire hemisphere in front of the lens. Fisheye lenses were initially designed for scientific use, such as cloud recording and angle measuring, and were widely used for commercial purposes later. The development of photographic fisheye lenses started in 1960s. However, the lack of detailed references on photographic fisheye lens design makes such design challenging. This thesis provides detailed introduction of photographic fisheye lens design for 35mm format DSLR cameras. A discussion on the history of fisheye lenses is provided to describe the development of fisheye lenses. The tangential and sagittal magnifications are mathematically derived for each fisheye lens projection mapping method to show their differences. The special properties and design issues of photographic fisheye lenses are described in detail. Along with each design issue, some solutions suggested by the author are also provided. The performance of the current diagonal fisheye lenses for 35mm DSLR cameras are evaluated in detail. Then a new diagonal fisheye lens designed by the author is presented and compared with the current diagonal fisheye lenses on the market. Finally, a zoom fisheye lens designed for 35mm DSLR cameras is presented and discussed.
4

Observations on chick embryo lens morphogenesis in vivo and in vitro

McLean, Brian G. January 1972 (has links)
Ultrastructural observations on the six-day chick embryo lens reveal that fibre cell differentiation, which involves extensive cell elongation, is characterized by the presence of numerous oriented microtubules and by marked changes in intercellular relationships which are felt to be important for cell extension. Increased Golgi activity in cells initiating elongation appears to be related to the formation of intercellular junctions and the elaboration of new surface membrane. Studies concerning the differentiation in vitro of anterior lens epithelia demonstrate that their cells elongate either to a great extent or to a limited extent, depending on factors deriving from the epithelial conformation.The conformation of an explanted anterior lens epithelium can be manipulated so that its cells elongate consistently to either a limited or a great extent. These cells, whether elongated to a limited or to a great extent, are ultrastructurally similar with respect to features reflecting cytoplasmic differentiation, including those important for morphogenesis. Their fine structure closely resembles that of fibre cells differentiating in vivo. The cells of anterior lens epithelia differentiating in vitro, whether elongating to a limited or to a great extent, are the same in terms of the nature and relative proportions of their soluble proteins as indicated by polyacrylamide gel electrophoresis. There is a change in the relative proportions of the soluble proteins accumulated by the anterior lens epithelia when they differentiate in vitro that is similar to that which occurs in cells undertaking fibre cell differentiation in vivo. It is concluded that those factors deriving from the conformation of the anterior lens epithelium that affect the degree of elongation of its cells differentiating in vitro are physical in nature. Since such physical factors are important with regard to restraining or encouraging the expression of morphogenetic potential in vitro, it is suggested that similar physical forces are important in lens morphogenesis in vivo. Observations concerning anterior lens epithelia elongating to a great extent in vitro demonstrate that their cells progressively elongate for only about three days. Well differentiated explants cultured for longer periods do not show greater elongation or further cytoplasmic differentiation. Their cells, at the ultrastructural level, resemble differentiating fibre cells in vivo rather than differentiated ones. It is concluded that the anterior lens epithelium has some capacity for differentiation independent of the ocular environment, but that the latter is essential for the expression of its full developmental potential. / Science, Faculty of / Zoology, Department of / Graduate
5

Mechanics of nonlinear biomembranes: application to ophthalmology

David, Fredegusto Guido 25 April 2007 (has links)
Changes in the mechanics of the lens capsule of the eye arising from alterations of its native configuration can lead to undesirable clinical results. One example is the surgical introduction of a hole into the lens capsule and subsequent removal of the cloudy lens during cataract surgery. The adverse effect is secondary cataract on the posterior lens capsule, brought about by a sudden proliferation of lens epithelial cells in the region. Understanding the biomechanics of the anterior lens capsule is necessary in order to model its behavior under various physiological conditions and predict its response to alterations and perturbations such as those during cataract surgery. Such knowledge will help in the improvement of techniques during cataract surgery, and in the design of artificial intraocular lens. In this study we present, for the first time, results that demonstrate that the anterior lens capsule exhibits non-homogeneity and regionally varying anisotropy. We also compute stresses in the lens capsule due to normal loading conditions and procedures such as a capsulorhexis.
6

The Study of Radiation Pattern and Electricity for High-Power Blue LED in Acceleration Aging Test

Lo, Yuan-Tsun 15 July 2008 (has links)
The technology of high-power light-emitting diodes (LEDs) is mature. In this study, the LEDs were aged through high temperature to understand the packaging failure mechanisms under lasting lighting. The Tracepro optics simulation software is also applied to analyze the radiation pattern decay caused by curvature variation and material aging. In the experiment procedure, the LEDs of three manufactures were placed in aging ovens in three different temperatures set at 95¢J, 85¢J, and 65¢J. The experiment results showed that the LED failures were the lens and silicon gel yellowing, silicon gel carbonization, lens slightly chapping, silicon cracks, bubbles generated between lens and silicon gel, and chip damage induced reverse current increase during the aging experiment. We observed the failure mechanism in reduction of optical power at 90%, 80%, 70%, 60%, 50% original power. Furthermore, the failure mechanisms of different from the manufactures is also compared in this work. The LED packages have long lifetime without silicon gel carbonization. In simulation study, a gap of lens deformation showed a reduction at -60¢X~-40¢X and 40¢X~60¢X of the radiation pattern. The LED modules also showed that the silicon gel and PC absorption coefficient increased. Material absorption coefficient increased more in the short wavelength showed 149mcd at ¡Ó60¢X of the radiation pattern.
7

Mass spectrometry of lens fiber membrane proteins

Shearer, David B. 03 April 2012 (has links)
Gap junctions are communicating junctions between cells that allow small molecules to pass from the cytoplasm of one cell to the cytoplasm of an adjacent cell. The pores of gap junctions are comprised of two adjacent connexons on neighboring cells, and each connexon is comprised of six connexin proteins. The eye lens of vertebrates is an avascular tissue that is dependent on gap junctions for the distribution of nutrients as well as the removal of waste products. In addition, as the lens cells develop into fibers, they lose their intracellular organelles including the membrane-bound organelles, and are highly dependent on connexons for movement of metabolites and waste materials. Only two connexins, in Bos Taurus Cx44 and Cx49, are highly expressed in lens fiber cells. Thus, the lens offers an excellent system for studying gap junctions. In this study, high-pressure liquid chromatography (HPLC) and mass spectrometry (MS) techniques were used to isolate and characterize connexin proteins from the eye lens of the cow and mouse. Despite over 300 proteins being identified from bovine lens using MS techniques, it was still possible to identify the two connexin proteins following proteolytic digests and MS analysis of the resultant peptides. Several post- translational modifications (PTMs) were identified and characterized in lens fiber connexins, including phosphorylations, acetylations and deamidations and proteolytic cleavages. Changes in phosphorylation of several other lens proteins upon the activation of protein kinase C were also identified. Detection of the orthologous proteins in mouse lens proved more challenging, but peptides derived from both connexin proteins were also detected from this tissue and PTMs of mouse connexins were also observed. Glutathione-S-transferase fusions to mouse Cx44 and Cx50 were used to identify a number of proteins that may interact with the mouse connexins, and the relevance of those interactions was considered. The utility of mass spectrometry to the identification of specific proteins from complex mixtures was clearly demonstrated, and its application to understanding the functional relevance of PTMs was discussed.
8

Product tactics in a complex and turbulent environment viewed through a complexity lens

Mason, Roger Bruce January 2012 (has links)
This paper is based on the proposition that the choice of different product tactics is influenced by the nature of the firm’s external environment. It illustrates the type of product activities suggested for a complex and turbulent environment, when viewing the environment through a chaos and complexity theory lens. A qualitative, case method, using depth interviews,investigated the product activities in two companies to identify the product activities adopted in a more successful, versus a less successful, firm in a complex/turbulent environment. The results showed that the more successful company uses some destabilizing product activities but also partially uses stabilizing product activities. These findings are of benefit to marketers as they emphasize a new way to consider future product activities in their firms. Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched, with even less emphasis on individual components of the marketing mix.
9

Raman spectroscopic/imaging studies of eye lenses and lens proteins

Chen, Wen-Lung 12 1900 (has links)
No description available.
10

Mass spectrometry of lens fiber membrane proteins

Shearer, David B. 03 April 2012 (has links)
Gap junctions are communicating junctions between cells that allow small molecules to pass from the cytoplasm of one cell to the cytoplasm of an adjacent cell. The pores of gap junctions are comprised of two adjacent connexons on neighboring cells, and each connexon is comprised of six connexin proteins. The eye lens of vertebrates is an avascular tissue that is dependent on gap junctions for the distribution of nutrients as well as the removal of waste products. In addition, as the lens cells develop into fibers, they lose their intracellular organelles including the membrane-bound organelles, and are highly dependent on connexons for movement of metabolites and waste materials. Only two connexins, in Bos Taurus Cx44 and Cx49, are highly expressed in lens fiber cells. Thus, the lens offers an excellent system for studying gap junctions. In this study, high-pressure liquid chromatography (HPLC) and mass spectrometry (MS) techniques were used to isolate and characterize connexin proteins from the eye lens of the cow and mouse. Despite over 300 proteins being identified from bovine lens using MS techniques, it was still possible to identify the two connexin proteins following proteolytic digests and MS analysis of the resultant peptides. Several post- translational modifications (PTMs) were identified and characterized in lens fiber connexins, including phosphorylations, acetylations and deamidations and proteolytic cleavages. Changes in phosphorylation of several other lens proteins upon the activation of protein kinase C were also identified. Detection of the orthologous proteins in mouse lens proved more challenging, but peptides derived from both connexin proteins were also detected from this tissue and PTMs of mouse connexins were also observed. Glutathione-S-transferase fusions to mouse Cx44 and Cx50 were used to identify a number of proteins that may interact with the mouse connexins, and the relevance of those interactions was considered. The utility of mass spectrometry to the identification of specific proteins from complex mixtures was clearly demonstrated, and its application to understanding the functional relevance of PTMs was discussed.

Page generated in 0.0577 seconds