• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient WiMAX Receiver Implementation on a Programmable Baseband Processor

Axell, Christian, Brogsten, Mikael January 2006 (has links)
<p>WiMAX provides broadband wireless access and uses OFDM as the underlying modulation technique. In an OFDM based wireless communication system, the channel will distort the transmitted signal and the performance is seriously degraded by synchronization mismatches between the transmitter and receiver. Therefore such systems require extensive digital signal processing of the received signal for retrieval of the transmitted information.</p><p>In this master thesis, parts of an IEEE 802.16d (WiMAX) receiver have been implemented on a programmable baseband processor. The implemented parts constitute baseband algorithms which compensates for the effects from the channel and synchronization errors. The processor has a new innovative architecture with an instruction set optimized for baseband applications.</p><p>This report includes theory behind the baseband algorithms as well as a presentation of how they are implemented on the processor. An impartial evaluation of the processor performance with respect to the algorithms used in the reference model is also presented in the report.</p>
2

Efficient WiMAX Receiver Implementation on a Programmable Baseband Processor

Axell, Christian, Brogsten, Mikael January 2006 (has links)
WiMAX provides broadband wireless access and uses OFDM as the underlying modulation technique. In an OFDM based wireless communication system, the channel will distort the transmitted signal and the performance is seriously degraded by synchronization mismatches between the transmitter and receiver. Therefore such systems require extensive digital signal processing of the received signal for retrieval of the transmitted information. In this master thesis, parts of an IEEE 802.16d (WiMAX) receiver have been implemented on a programmable baseband processor. The implemented parts constitute baseband algorithms which compensates for the effects from the channel and synchronization errors. The processor has a new innovative architecture with an instruction set optimized for baseband applications. This report includes theory behind the baseband algorithms as well as a presentation of how they are implemented on the processor. An impartial evaluation of the processor performance with respect to the algorithms used in the reference model is also presented in the report.

Page generated in 0.0122 seconds