• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical and genetic properties of HPRT Cape Town

Galloon, Terry January 1987 (has links)
An unusual partial HPRT deficient mutant, HPRT Cape Town was observed to have a low activity in erythrocyte lysates at high concentrations of the purine substrates, hypoxanthine and guanine. This substrate inhibition was not observed with the substrate PPRP. The low activity was not associated with changes in the Km or Vmax for any of the substrates (Steyn and Harley, 1984). The kinetics of the proband's enzyme was studied in lymphoblast extracts. The characteristic substrate inhibition was observed which showed that this phenomenon was not confined to erythrocytes but was a more generalized phenomenon. This result implies that the decreased HPRT activity observed in the proband is due to substrate inhibition by the purine bases. The HPRT enzyme is coded for by a gene which is located on the X chromosome (Pai et al., 1980). The proband's daughter was therefore studied in order to determine the cause of the mutation. It was not known whether the substrate inhibition was the result of a mutation in the gene coding for the enzyme, a mutation which results in altered post-translational modification or the absence or alteration of factors influencing normal HPRT kinetics. The daughter's transformed lymphoblasts exhibited growth patterns in selective media that resembled those of her father. The daughter's enzyme prepared from lymphoblast extracts exhibited the characteristic substrate inhibition. These results suggest that this cell line results from the selection of a clone or clones which have suppressed the function of the X chromosome carrying the maternal and presumably normal HPRT allele. The daughter's enzyme prepared from erythrocyte lysates exhibited intermediate enzyme activity between that of the proband and a normal control. This result suggests that the daughter is an obligate heterozygote and that the defect is due to a mutation in the HPRT gene itself. The defect was studied at the gene level. No difference was observed in the banding patterns of the proband's DNA and control DNA which were digested with various restriction enzymes and hybridized to ³²p-labelled HPRT cDNA. The size of the HPRT mRNA of the proband was the same as the control. These results imply that there is no major gene alteration; this is expected since the proband only has a partial deficiency of the enzyme. The HPRT cDNA was subcloned into a riboprobe vector, pGEM-3. The T7 promoter was used to transcribe antisense RNA strands which were then hybridized to the proband's RNA and control RNA. No difference was observed in the size of the protected fragment. This result does not exclude the possibility of a point mutation as the cause of the defect in HPRT Cape Town.
2

Evaluation of screening strategies for the detection of molecular pathologies

Boyd, Marie January 1995 (has links)
No description available.
3

Metal oxides modified multiwalled carbon nanotubes based biosensor for determination of hypoxanthine

Thole, Dina. January 2022 (has links)
Thesis (M.Sc. (Chemistry)) -- University of Limpopo, 2022 / Heart and Stroke Foundation South Africa (HSFSA) reports that about 17.3% of deaths in the country are associated with heart-related diseases and this rate is expected to increase to 41% by the year 2030. This severe increase in death cases is related to diseases caused by consumption of meat (i.e., pork, fish, red meat, and poultry) with high levels of hypoxanthine. Therefore, this raises the need to investigate and detect hypoxanthine levels in the meat. This study aimed at developing a highly stable and sensitive biosensor for the detection of hypoxanthine in fish meat using the glassy carbon electrode (GCE) modified with carbon nanocomposites materials (consisting of metal oxides doped multi-walled carbon nanotubes (MO-MWCNTs) that are treated with amine groups) and an enzyme, xanthine oxidase (XOD) as a catalyst. The sol gel method was used to prepare the metal oxides including zinc oxide (ZnO), zirconium dioxide (ZrO2), manganese (MnO2), cobalt oxide (Co3O4), and titanium dioxide (TiO2). The in-situ method of functionalisation of MWCNTs was employed to increase their current outputs/sensitivity using selected amines, namely, methylenediamine, hydrazine, ethylenediamine (EDA), and triethylenetetramine (TETA). The electrochemical properties of the metal oxides and amine functionalised MWCNTs were studied using both cyclic and differential pulse voltammetry. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of carboxyl (COOH), hydroxyl (OH), and amino (NH2) groups on the surface of the modified MWCNTs; as well as formation of stretching vibrations which appear at lower wavelengths due to the metallic species within the nanocomposite. Thermal gravimetric analyser (TGA) was employed to determine the thermal stability of the nanocomposite. Scanning electron microscopy (SEM) was used to confirm the composite structure and correct deposition of the metal oxides on the walls of MWCNTs. XRD was used to confirm correct structure formation, the crystallinity, and the purity of the nanocomposite. Optimum conditions of the developed biosensor were determined, and the application of the developed biosensor was undertaken on fish meat bought at the local supermarket using the Cyclic and Differential pulse voltammetric techniques. Two highly electrochemical metal oxides among others were TiO2 and Co3O4. The modified MWCNTs containing TETA possess good electrochemical properties with improved sensitivity and selectivity towards hypoxanthine. The presence of metal oxides on MWCNTs and their treatments with amines as confirmed by techniques such as TGA, SEM, XRD, and FTIR have provided a suitable matrix for the immobilisation of the enzyme, namely, xanthine oxidase at 0.5 unit (U). TGA results showed that the unmodified MWCNTs decompose at around 600 0C, but when they are modified with acids and amine decomposition starts at 230 0C, proving that functionalisation of MWCNTs tempers with their thermal stability. Based on the SEM morphological results, attachment of the amines and metal oxides on MWCNTs was seen at x60 000 magnification. Morphology of acid treated MWCNTs appeared thinner, revealing that acids tends to deteriorate the MWCNTs, while the amino treated MWCNTs appeared well modified with less damage on the MWCNTs. XRD confirmed the successful purification of MWCNTs with the intense diffraction peak at 260 that can be assigned to the (002) reflection of graphite. The strong diffraction peak at 250o and a broad peak at 450 indicate that the titania nanoparticles are pure and in the anatase phase. They also show successful deposition of the titanium dioxide onto the surface of the MWCNTs. However, on the formation of cobalt oxide two phases were observed which were CoO, and Co3O4, and on bimetallic nanocomposite (cobalt titanium oxide) also two phases were observed which were CoTiO3, and Co2TiO4. It was found that the sensor performs better at 25 oC at a pH of 7.5 in a phosphate buffer at concentration of 5 mM. The limit of detection of the biosensor was found to be 0.16 nM. The highly electroconductive electrode was XOD/3%Co2TiO4-MWCNTs-TETA/GCE, which was selected for analysis of fish meat. The biosensor has shown low interfering values with high stability, good reusability retaining 73.4% of its initial performance after 50 days of continuous study. The excellent results were obtained on fish meat analysis using cyclic and differential pulse voltammetry revealed that even meat which is deep frozen can also deteriorate as time passes by. Altogether, the findings from this study suggest that the developed biosensor is a reliable analytical tool for the determination of freshness of fish meat using hypoxanthine levels as a marker / National Research Foundation (NRF) and Sasol Inzalo Foundation
4

Metal oxides modified multiwalled carbon manotubes based biosensor for determination of hypoxanthine

Thole, Dina January 2022 (has links)
Thesis (M.Sc. (Chemistry)) -- University of Limpopo, 2022 / Heart and Stroke Foundation South Africa (HSFSA) reports that about 17.3% of deaths in the country are associated with heart-related diseases and this rate is expected to increase to 41% by the year 2030. This severe increase in death cases is related to diseases caused by consumption of meat (i.e., pork, fish, red meat, and poultry) with high levels of hypoxanthine. Therefore, this raises the need to investigate and detect hypoxanthine levels in the meat. This study aimed at developing a highly stable and sensitive biosensor for the detection of hypoxanthine in fish meat using the glassy carbon electrode (GCE) modified with carbon nanocomposites materials (consisting of metal oxides doped multi-walled carbon nanotubes (MO-MWCNTs) that are treated with amine groups) and an enzyme, xanthine oxidase (XOD) as a catalyst. The sol gel method was used to prepare the metal oxides including zinc oxide (ZnO), zirconium dioxide (ZrO2), manganese (MnO2), cobalt oxide (Co3O4), and titanium dioxide (TiO2). The in-situ method of functionalisation of MWCNTs was employed to increase their current outputs/sensitivity using selected amines, namely, methylenediamine, hydrazine, ethylenediamine (EDA), and triethylenetetramine (TETA). The electrochemical properties of the metal oxides and amine functionalised MWCNTs were studied using both cyclic and differential pulse voltammetry. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of carboxyl (COOH), hydroxyl (OH), and amino (NH2) groups on the surface of the modified MWCNTs; as well as formation of stretching vibrations which appear at lower wavelengths due to the metallic species within the nanocomposite. Thermal gravimetric analyser (TGA) was employed to determine the thermal stability of the nanocomposite. Scanning electron microscopy (SEM) was used to confirm the composite structure and correct deposition of the metal oxides on the walls of MWCNTs. XRD was used to confirm correct structure formation, the crystallinity, and the purity of the nanocomposite. Optimum conditions of the developed biosensor were determined, and the application of the developed biosensor was undertaken on fish meat bought at the local supermarket using the Cyclic and Differential pulse voltammetric techniques. vi Two highly electrochemical metal oxides among others were TiO2 and Co3O4. The modified MWCNTs containing TETA possess good electrochemical properties with improved sensitivity and selectivity towards hypoxanthine. The presence of metal oxides on MWCNTs and their treatments with amines as confirmed by techniques such as TGA, SEM, XRD, and FTIR have provided a suitable matrix for the immobilisation of the enzyme, namely, xanthine oxidase at 0.5 unit (U). TGA results showed that the unmodified MWCNTs decompose at around 600 0C, but when they are modified with acids and amine decomposition starts at 230 0C, proving that functionalisation of MWCNTs tempers with their thermal stability. Based on the SEM morphological results, attachment of the amines and metal oxides on MWCNTs was seen at x60 000 magnification. Morphology of acid treated MWCNTs appeared thinner, revealing that acids tends to deteriorate the MWCNTs, while the amino treated MWCNTs appeared well modified with less damage on the MWCNTs. XRD confirmed the successful purification of MWCNTs with the intense diffraction peak at 260 that can be assigned to the (002) reflection of graphite. The strong diffraction peak at 250o and a broad peak at 450 indicate that the titania nanoparticles are pure and in the anatase phase. They also show successful deposition of the titanium dioxide onto the surface of the MWCNTs. However, on the formation of cobalt oxide two phases were observed which were CoO, and Co3O4, and on bimetallic nanocomposite (cobalt titanium oxide) also two phases were observed which were CoTiO3, and Co2TiO4. It was found that the sensor performs better at 25 oC at a pH of 7.5 in a phosphate buffer at concentration of 5 mM. The limit of detection of the biosensor was found to be 0.16 nM. The highly electroconductive electrode was XOD/3%Co2TiO4-MWCNTs-TETA/GCE, which was selected for analysis of fish meat. The biosensor has shown low interfering values with high stability, good reusability retaining 73.4% of its initial performance after 50 days of continuous study. The excellent results were obtained on fish meat analysis using cyclic and differential pulse voltammetry revealed that even meat which is deep frozen can also deteriorate as time passes by. Altogether, the findings from this study suggest that the developed biosensor is a reliable analytical tool for the determination of freshness of fish meat using hypoxanthine levels as a marker. / NRF Sasol Inzalo Foundation
5

Molekulárně genetické a biochemické studie vybraných dědičných metabolických onemocnění, vývoj a aplikace nových metod. / Molecular genetic and biochemical studies of selected inherited metabolic disorders, development and applications of new methods

Mušálková, Dita January 2016 (has links)
Inherited metabolic disorders (IMD) form a diverse group of several hundred different diseases with a relatively high cumulative incidence (stated up to 1:600). They are associated with accumulation of the substrates and lack of the products in specific metabolic pathways, which is caused by deficiency of the enzyme or its activator, or dysfunction of the transport protein. However, the underlying cause is at the DNA level. The grounds for different phenotype manifestation in patients with the same genotype are often not known. During my work at the Institute of Inherited Metabolic Disorders, I designed several new methods for the research of IMD and applied them in the patients and their families. I created procedures for the isolation of lysosomal membranes that are used for the research of lysosomal storage disorders and general properties of lysosomes. Next, I introduced several novel assays for determination of the X-inactivation ratio, which led to a significant increase of informative women. Nowadays, we use these methods in heterozygous women with X-linked diseases in order to study the influence of X-inactivation on the manifestation of the diseases. The cases of a girl with mucopolysaccharidosis type II, a girl with OTC deficiency and a family with the mutation in HPRT1 gene are described...
6

Molekulárně genetické a biochemické studie vybraných dědičných metabolických onemocnění, vývoj a aplikace nových metod. / Molecular genetic and biochemical studies of selected inherited metabolic disorders, development and applications of new methods

Mušálková, Dita January 2016 (has links)
Inherited metabolic disorders (IMD) form a diverse group of several hundred different diseases with a relatively high cumulative incidence (stated up to 1:600). They are associated with accumulation of the substrates and lack of the products in specific metabolic pathways, which is caused by deficiency of the enzyme or its activator, or dysfunction of the transport protein. However, the underlying cause is at the DNA level. The grounds for different phenotype manifestation in patients with the same genotype are often not known. During my work at the Institute of Inherited Metabolic Disorders, I designed several new methods for the research of IMD and applied them in the patients and their families. I created procedures for the isolation of lysosomal membranes that are used for the research of lysosomal storage disorders and general properties of lysosomes. Next, I introduced several novel assays for determination of the X-inactivation ratio, which led to a significant increase of informative women. Nowadays, we use these methods in heterozygous women with X-linked diseases in order to study the influence of X-inactivation on the manifestation of the diseases. The cases of a girl with mucopolysaccharidosis type II, a girl with OTC deficiency and a family with the mutation in HPRT1 gene are described...

Page generated in 0.0533 seconds