Spelling suggestions: "subject:"leschetz hyperplane heorem."" "subject:"leschetz hyperplane atheorem.""
1 |
Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.Sacchetto, Lucas Kaufmann 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
|
2 |
Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos. / Foundations of Complex Geometry: geometric, topological and analytic aspects.Lucas Kaufmann Sacchetto 03 May 2012 (has links)
Este trabalho tem como objetivo apresentar um estudo detalhado dos fundamentos da Geometria Complexa, ressaltando seus aspectos geométricos, topológicos e analíticos. Começando com materiais preliminares, como resultados básicos sobre funções holomorfas de uma ou mais variáveis e a definição e primeiros exemplos de variedades complexas, passamos a uma introdução à teoria de feixes e sua cohomologia, ferramenta indispensável para o restante do trabalho. Após um estudo sobre fibrados de linha e divisores damos atenção à Geometria de Kähler e alguns de seus resultados centrais, como por exemplo o Teorema da Decomposição de Hodge, o Teorema ``Difícil\'\' e o Teorema das $(1,1)$-classes de Lefschetz. Em seguida, nos dedicamos ao estudo dos fibrados vetoriais complexos e sua geometria, abordando os conceitos de conexões, curvatura e Classes de Chern. Terminamos o trabalho descrevendo alguns aspectos da topologia de variedades complexas, como o Teorema dos Hiperplanos de Lefschetz e algumas de suas consequências. / The main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
|
Page generated in 0.083 seconds