• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • Tagged with
  • 98
  • 98
  • 97
  • 93
  • 19
  • 16
  • 13
  • 12
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Effectiveness of Oils in Water for Leafminer Control in Fall Head Lettuce

Rethwisch, Michael D., Hood, Larry, Meadows, Mike 12 1900 (has links)
No description available.
52

Evaluation of Foliar Applied Nutritional Mixes on Crisphead Lettuce for Yield, Quality and Incidence of Tipburn

Wilcox, M., Sanchez, C. A. 09 1900 (has links)
No description available.
53

Effect of Agronomix on Crisphead Lettuce at Yuma - 1992

Oebker, N. F., Wilcox, Mark 09 1900 (has links)
No description available.
54

Crisphead Lettuce Variety Trials 1995/96

Wilcox, Mark 08 1900 (has links)
No description available.
55

The Response of Leaf Lettuce to Phosphorous Fertilizer Placement and Rate

Pritchard, Kevin H., Doerge, Thomas A., McCreary, Ted W. 09 1900 (has links)
A one-year field study was conducted at the Maricopa Agricultural Center in the winter and spring of 1991-92 with the purpose of comparing the response of leaf lettuce grown with subsurface drip irrigation to various broadcast and banded phosphorus (P) fertilizer applications and rates. Two rates of banded treble superphosphate, 250 lbs. (1X) and 125 lbs. (1/2X) of P2Osper acre, were applied immediately before planting in a concentrated strip 1 inch directly below the row to be seeded. One broadcast rate, 250 lbs. (1X) of P205 per acre of the same material, was applied and folded into the planting beds during listing. Control plots, in which zero P fertilizer was applied, were also maintained. Whole plant total P concentrations were higher in the first one-third of the growing season for the band treatments, though the differences in responses between band and broadcast applications were not statistically significant in the final third of the season. The 1X band treatment exhibited both greater plant heights and diameters than all other treatments during the first one-half of the growing season, and maintained greater height dimensions in the second half. The 1X broadcast and 1/2X band treatments exhibited similar growth throughout the season. By harvest there were not significant differences in head or plant size or in marketable yield among the three P treatments.
56

Management of Sclerotinia Leaf Drop on Lettuce: Efficacy of Fungicides in 1996 Field Trial

Matheron, Michael E., Porchas, Martin 08 1900 (has links)
Leaf drop of lettuce is caused by the plant pathogenic fungi Sclerotinia minor and S. sclerotiorum. Cool and moist environmental conditions favor disease development. Potential new fungicides were evaluated in a field trial for management of this disease in 1996. For plots containing Sclerotinia minor, all compounds and rates tested significantly reduced the number of diseased heads compared to plots not treated with a fungicide. All treatments except Ronilan at the 0.5 lb. a. i./A rate yielded a significantly higher number of marketable heads compared to nontreated plots infested with S. minor. For plots containing S. sclerotiorum, all materials except the Ciba compound at the low and high rates decreased the number of diseased heads and increased the number of marketable heads compared to nontreated plots.
57

Optimal Soil Placement and Application Method of Admire® for Sweetpotato Whitefly Control in Head Lettuce

Palumbo, John, Kerns, David, Sanchez, Charles, Wilcox, Mark 08 1900 (has links)
The effects of Admire formulation and soil placement on colonization by sweetpotato whitefly, Bemisia tabaci (Gennadius), at three plant growth stages of lettuce, Lactuca sativa L., were evaluated in experimental and commercial lettuce plots in 1993-1994. We also evaluated the effects of Admire treatments on yield response and incidence of chlorosis associated with whitefly control. Admire placement had a significant affect on whitefly colonization in lettuce throughout the experimental period. Whitefly densities on lettuce varied at each plant stage relative to depth of placement within the lettuce seed bed. Applications made to the soil surface and at 1.5 inch sub-seed furrow followed by irrigation, provided the most consistent control of whitefly nymphs in both small plot and on -farm lettuce plots. These Admire soil treatments also prevented reductions in head size and incidence of leaf chlorosis associated with whitefly colonization in lettuce. Our data suggest that incorporation of Admire into the upper 1.5 - 2 inches of soil below the seed furrow is optimal for absorption and translocation by lettuce roots. Admire soil treatments may provide a more environmentally suitable and effective alternative to control of whiteflies in lettuce than is currently possible with foliar insecticide reatments.
58

Temporal Activity of New Insecticde Chemistries Against Beet Armyworm in Lettuce

Palumbo, John C., Kerns, David L. 08 1900 (has links)
Three new insecticide chemistries (Alert, Spinosad and Confirm) were evaluated and compared with standard chemistries for temporal mortality of beet armyworm in lettuce. Field assessment and lab bioassay were conducted at the thinning, heading, and harvest stage of lettuce. Results from both the field and laboratory indicated similar trends for the temporal activity of the products. Alert appears to be have the most rapid "knockdown activity" with 100% mortality consistently occurring by 2 DAT. Spiniest, a naturalyte insecticide, has activity similar to Larvin. Both require 2-3 days to achieve complete larval mortality. Confirm, a new IGR selective for lepidoptera, requires significantly more time to achieve complete mortality (4-5 DAT). It can be compared with Bt (Xentari) activity in that it has initially slow activity. However, unlike Bt, it can effectively cause complete beet armyworm mortality. The results of this study are consistent with similar studies we conducted in 1994 and 1995 and provide basic guidelines concerning the activity and assessment of the performance of these materials in the field. However, PCAs and growers will ultimately be able to develop specific use patterns for these materials within their individual lettuce pest management programs.
59

Field Testing of Potential New Fungicides for Control of Lettuce Diseases, 1993

Matheron, M. E., Matejka, J. C., Porchas, M. 09 1900 (has links)
Several diseases caused by plant pathogenic fungi can cause economic losses to lettuce growers in Arizona. Leaf drop of lettuce is caused by Sclerotinia minor and S. sclerotiorum, while downy and powdery mildew are caused by Bremia lactucae and Erysiphe cichoracearum, respectively. Cool and moist environmental conditions favor development of leaf drop and downy mildew, while warmer and dry weather is conducive for development of powdery mildew. Potential new fungicides were evaluated for control of these diseases during the winter of 1992-93. For leaf drop, two nonregistered materials, Fluazinam and Topsin M, controlled disease at least well as the standard registered fungicides. Fluazinam and Aliette provided equivalent control of downy mildew, while Fluazinam but not Aliene significantly reduced the severity of powdery mildew on lettuce.
60

Mixed Lettuce and Romaine Variety Trials 1995/96

Wilcox, Mark 08 1900 (has links)
No description available.

Page generated in 0.0321 seconds