Spelling suggestions: "subject:"lettuce -- diseases"" "subject:"lettuce -- iseases""
1 |
Electron microscopical, greenhouse and field studies of tipburn of head lettuceMatyac, Carl Allen January 1981 (has links)
No description available.
|
2 |
Studies on leaf-spot disease of lettuce (lactuca sativa L.) caused by cercospora longissima (Cug.) Sacc.January 1975 (has links)
Thesis (M.Phil.)--Chinese University of Hong Kong. / Bibliography: leaves 109-121.
|
3 |
Rhythm of zoospore production of pythium on lettuce cultured hydroponicallySultan, Youneskhan, 1957- January 1988 (has links)
Zoospore production of Pythium dissotocum Drechs. in the nutrient solution of hydroponically-grown lettuce, in the greenhouse, was shown to be cyclic. The number of zoospores detected in the nutrient solution was lowest around noontime, (11:00-14:00 hr) and highest around 20:00 hr. Growth chamber studies were conducted to determine the effect of different light periods on zoospore production. Under continuous light or continuous darkness, the population of zoospores in the nutrient solution decreased. But under 12 hours light, and 12 hours darkness or two periods of light each for 3 hours, zoospore populations decreased during the light period but increased during the dark period.
|
4 |
Studies of the phylloplane microflora of lettuce and its interactions with pesticides and Sclerotinia sclerotiorumMercier, Julien. January 1986 (has links)
No description available.
|
5 |
Studies of the phylloplane microflora of lettuce and its interactions with pesticides and Sclerotinia sclerotiorumMercier, Julien. January 1986 (has links)
No description available.
|
6 |
Sclerotiniose of Lettuce in ArizonaBrown, J. G., Butler, Karl D. 15 June 1936 (has links)
No description available.
|
7 |
Origin and detection of bacterial species associated with lettuce and salad vegetables.Ng, Peter James, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Ready-to-eat vegetable salads containing lettuce as a main ingredient have become popular food items in recent years. Microorganisms associated with these products determine their shelf-life, sensory appeal and safety. This thesis investigates the bacterial ecology of lettuce, aspects of their pre-harvest contamination with microorganisms, and the presence of antimicrobial constituents in such produce. Commercial pesticides (insecticides, herbicides, fungicides), used during lettuce cultivation were examined as potential sources of microbial contaminants. None of the pesticide concentrates contained viable microorganisms. After reconstitution in water, two of the pesticides supported growth of inoculated species of Pseudomonas, Salmonella and Escherichia coli. Pesticides reconstituted in agricultural waters (bore, dam and river) supported the growth of microorganisms (e.g. Pseudomonas, Acinetobacter, Aeromonas spp. and coliforms) naturally present in these waters. Unless properly managed, pesticide application could contribute microbial contaminants to vegetable produce, thereby affecting their quality. Bacterial species associated with retail samples of lettuce were examined by plate culture on Tryptone Soy Agar and PCR-DGGE analysis. Macerates and rinses of lettuce sub-samples with and without addition of Tween 80 were examined to maximize bacterial recoveries. Predominant bacteria isolated by agar culture included species of Pseudomonas, Agrobacterium, Curtobacterium and Burkholderia, at populations of 103-106 cfu/g. PCR-DGGE was unable to recover the same incidence of species as agar culture and failed to detect bacteria in many samples. In some samples, PCR-DGGE detected species of Bacillus, Pseudomonas, Serratia and Acinetobacter, not found by culture. Failure of the PCR-DGGE analyses was attributed to interference by plant chloroplast DNA. Preparative agarose gel electrophoresis of lettuce macerates was necessary to remove chloroplast DNA before application of PCR-DGGE analysis. Thirty percent of lettuce samples contained Acinetobacter species at 101-104 cfu/g when examined after culture on minimal salts agar or enrichment in Baumann enrichment medium. Other Acinetobacter media failed to give reliable isolation of these species from lettuce and salad vegetables. Lettuce could be an environmental source of Acinetobacter nosocomial infections. Juices, solvent extracts and supercritical fluid carbon dioxide extracts of lettuce and capsicum samples did not exhibit antimicrobial action against a range of food spoilage and pathogenic bacteria.
|
8 |
Origin and detection of bacterial species associated with lettuce and salad vegetables.Ng, Peter James, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Ready-to-eat vegetable salads containing lettuce as a main ingredient have become popular food items in recent years. Microorganisms associated with these products determine their shelf-life, sensory appeal and safety. This thesis investigates the bacterial ecology of lettuce, aspects of their pre-harvest contamination with microorganisms, and the presence of antimicrobial constituents in such produce. Commercial pesticides (insecticides, herbicides, fungicides), used during lettuce cultivation were examined as potential sources of microbial contaminants. None of the pesticide concentrates contained viable microorganisms. After reconstitution in water, two of the pesticides supported growth of inoculated species of Pseudomonas, Salmonella and Escherichia coli. Pesticides reconstituted in agricultural waters (bore, dam and river) supported the growth of microorganisms (e.g. Pseudomonas, Acinetobacter, Aeromonas spp. and coliforms) naturally present in these waters. Unless properly managed, pesticide application could contribute microbial contaminants to vegetable produce, thereby affecting their quality. Bacterial species associated with retail samples of lettuce were examined by plate culture on Tryptone Soy Agar and PCR-DGGE analysis. Macerates and rinses of lettuce sub-samples with and without addition of Tween 80 were examined to maximize bacterial recoveries. Predominant bacteria isolated by agar culture included species of Pseudomonas, Agrobacterium, Curtobacterium and Burkholderia, at populations of 103-106 cfu/g. PCR-DGGE was unable to recover the same incidence of species as agar culture and failed to detect bacteria in many samples. In some samples, PCR-DGGE detected species of Bacillus, Pseudomonas, Serratia and Acinetobacter, not found by culture. Failure of the PCR-DGGE analyses was attributed to interference by plant chloroplast DNA. Preparative agarose gel electrophoresis of lettuce macerates was necessary to remove chloroplast DNA before application of PCR-DGGE analysis. Thirty percent of lettuce samples contained Acinetobacter species at 101-104 cfu/g when examined after culture on minimal salts agar or enrichment in Baumann enrichment medium. Other Acinetobacter media failed to give reliable isolation of these species from lettuce and salad vegetables. Lettuce could be an environmental source of Acinetobacter nosocomial infections. Juices, solvent extracts and supercritical fluid carbon dioxide extracts of lettuce and capsicum samples did not exhibit antimicrobial action against a range of food spoilage and pathogenic bacteria.
|
9 |
Sclerotinia Leaf Drop of Lettuce - Screening New Fungicides for Disease Control in 1986Matheron, M. E., Matejka, J. C. 05 1900 (has links)
In western Arizona, the incidence and severity of lettuce drop, caused by the fungus Sclerotinia sclerotiorum, can be significant during February, March and April. During 1986 a field trial was established to test new fungicides for disease control. Disease severity in the inoculated lettuce planting was significantly reduced by Baycor, Spotless and CGA-449, as well as the registered fungicides Ronilan and Rovral. Further testing of Baycor, Spotless and CQA-449 will be performed next year.
|
10 |
Cultural Alternative for Avoidance of Lettuce Infectious Yellows Virus (LIYV)McGrady, John, Rubatzky, Vince, Oebker, Norm, Hartz, Tim, Butler, Marvin, Tilt, Phil, Hagerman, Sherry 05 1900 (has links)
No description available.
|
Page generated in 0.0333 seconds