• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Abscisic Acid (ABA) on Germination Rate of Three Rangeland Species

Badrakh, Turmandakh 01 May 2016 (has links)
Seeds sown in the fall to restore sagebrush (Artemisia spp.) steppe plant communities could experience high mortality when they germinate and seedlings freeze during the winter. Delaying germination until the risk of frost is past could increase seedling survival. We evaluated the use of abscisic acid (ABA) to delay germination of Elymus elymoides, Pseudoroegneria spicata, and Linum perenne. The following treatments were applied: uncoated seed, seed coated with ABA at 2.2, 4.4, 8.8, 13.2, and 17.6 g of active ingredient kg-1 of seed, and seed coated with no ABA. The influence of seed treatments on germination were tested at five different incubation temperatures (5-25°C). The lowest application rate of ABA had no significant influence on germination percentage but higher application rates showed a decline. All concentrations of ABA tested delayed germination, especially at low incubation temperatures. For example, the time required for 50% of the seeds to germinate at 5°C was increased with the use of the lowest ABA application rate by 56, 61, and 14 days, for E. elymoides, P. spicata, and L. perenne, respectively. Quadratic thermal accumulation regression models were developed for each species and treatment to predict progress toward germination. For the two grasses, models had sufficient accuracy (R2 = 0.61- 0.97) to predict germination timing using field seedbed temperatures. Equations for L. perenne were less accurate (R2 = 0.03-0.70). Use of these models will allow testing whether ABA will delay germination sufficiently to avoid winter frost periods and provide the basis for future field tests.
2

Novel Techniques to Improve Restoration of Native Rangeland Species

Anderson, Rhett Michael 27 March 2020 (has links)
The sagebrush steppe is a particularly sensitive ecosystem that is easily disturbed by fires, oil and gas extraction, woody-plant encroachment, and overgrazing. The natural regeneration of native species following a disturbance within this system is typically slow and sporadic, which allows invasive grasses to occupy the landscape. Attempts to assist the recovery of these landscapes through direct seeding is commonly met with poor success rates, particularly in lower elevation, drier sites. Novel seed enhancement technologies and planting techniques that mitigate limiting factors impairing restoration efforts may improve the likelihood of restoring these degraded areas. For chapter 1, we evaluated a solid-matrix priming technique, where bluebunch wheatgrass (Pseudoroegneria spicata) and Lewis flax (Linum lewisii) were primed and then the priming matrix and seed were pelleted together. We evaluated primed seed that had been incorporated into pellets at two field sites against seed that was pelleted but been left unprimed, and untreated seed (control). These three seed treatments were planted in the spring (mid-march) in shallow (2-cm) and deep (15-cm) furrows, in a complete factorial design. We found that primed seeds generally produced higher plant densities than control seed at the beginning of the growing season; however, its influence diminished towards the end of the growing season. We also found that deep furrows increased plant density throughout the growing season and even into the following year. The combination of priming and deep furrows outperformed control seed in shallow furrows in all measured metrics. For chapter 2, we evaluated a seed conglomeration technique for improving Wyoming big sagebrush (Artemisia tridentata ssp. Wyomingensis) emergence and survival under fall and winter plantings. The trial was implemented at five sites across Utah and Nevada in a randomized complete block-split-split plot design, with site, and planting season, comprising the split-plot factors. Each site and season combination was seeded with conglomerated and control seed. We found that in most cases, a fall seeding of Wyoming big sagebrush was either the same or more successful compared to planting on the snow in the winter, which is the current suggested practice. Our results also demonstrated that seed conglomeration produced higher plant densities compared to control seed throughout the growing season. The higher density of plants produced from conglomerates combined with the improved seed delivery provided by the conglomeration technique was estimated to offset the cost in producing conglomerates and reduce overall restoration costs by 41%.

Page generated in 0.0405 seconds