1 |
Contribution à la compréhension de la structure de Li2MnO3, de ses défauts et de phases dérivées / Contribution to the understanding of the structure of Li2MnO3, of its defects and of derivative phasesBoulineau, Adrien 19 December 2008 (has links)
Afin de mieux comprendre les évolutions structurales mises en évidence dans les oxydes lamellaires de formule générale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisés comme électrode positive pour batterie lithium-ion, la structure du composé Li2MnO3 a été étudiée en détail. Obtenu selon différentes voies de synthèses, réalisées à différentes températures, ce matériau qui peut être considéré comme un matériau model à fait l’objet d’une étude cristallographique où l’utilisation de la microscopie électronique a été privilégiée. Deux types de défauts ont été identifiés. D’une part, l’existence de fautes d’empilement au sein du matériau a été démontrée. Leurs conséquences sur les clichés de diffraction électronique et les diagrammes de diffraction des rayons-X ont étés expliquées permettant d’unifier les controverses présentent à ce sujet dans la littérature. D’autre part, l’étude de la stabilité thermique du composé Li2MnO3 a mis en évidence l’apparition de défauts de type « phase spinelle » en surface des grains lorsque la température de traitement thermique devient supérieure ou égale à 900°C. Le traitement du matériau par la voie acide a pu être étudié et le mécanisme de désintercalation chimique du lithium par la voie acide a finalement pu être précisé. Il est montré que ce mécanisme est le même quelle que soit la taille des particules. / In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail. Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is.
|
2 |
MANGANESE-BASED THIN FILM CATHODES FOR ADVANCED LITHIUM ION BATTERYZhimin Qi (8070293) 14 January 2021 (has links)
<p>Lithium ion batteries have been regarded as one of the most promising and intriguing
energy storage devices in modern society since 1990s. A lithium ion battery
contains three main components, cathode, anode, and electrolyte, and the
performance of battery depends on each component and the compatibility between
them. Electrolyte acts as a lithium ions conduction medium and two electrodes
contribute mainly to the electrochemical performance. Generally, cathode is the
limiting factor in terms of capacity and cell potential, which attracts significant
research interests in this field.Different
from conventional slurry thick film cathodes with additional electrochemically
inactive additives, binder-free thin film cathode has become a promising
candidate for advanced high-performance lithium ion batteries towards applications
such as all-solid-state battery, portable electronics, and microelectronics.
However, these electrodes generally require modifications to improve the
performance due to intrinsically slow kinetics of cathode materials. </p>
<p>In
this thesis work, pulsed laser deposition has been applied to design thin film
cathode electrodes with advanced nanostructures and improved electrochemical
performance. Both single-phase nanostructure designs and multi-phase
nanocomposite designs are explored. In terms of materials, the thesis focuses
on manganese based layered oxides because of their high electrochemical performance.
In Chapter 3 of the nanocomposite cathode work, well dispersed Au nanoparticles were introduced into highly
textured LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2 </sub>(NMC532)
matrix to act as localized current collectors and decrease the charge transfer resistance.
To further develop this design, in Chapter 4, tilted Au pillars were incorporated
into Li<sub>2</sub>MnO<sub>3</sub> with more effective conductive Au
distribution using simple one-step oblique angle pulsed laser deposition. In
Chapter 5, the same methodology was also applied to grow 3D Li<sub>2</sub>MnO<sub>3</sub>
with tilted and isolated columnar morphology, which largely increase the lithium
ion intercalation and the resulted rate capability. Finally, in Chapter 6, direct
cathode integration of NMC532 was attempted on glass substrates for potential
industrial applications. </p>
|
3 |
Investigation of Transition Metal Oxides towards Development of Functional Materials for Visible Light Absorption/Emission and Reversible Redox Lithium Deinsertion/InsertionTamilarasan, S January 2016 (has links) (PDF)
Materials chemistry basically deals with rational design and synthesis of new solids exhibiting various functional properties. A sound knowledge of crystal structures and chemical bonding is needed to understand the properties of materials. Space group, cell parameters and atomic positions provide a basic crystallographic description of the structure. Crystal structure could be described in a detailed way in terms of close packing of anions and occupancy of cations in different coordination sites. The coordination polyhedra and their interconnectivity bring out the interrelationships between different structures and the properties exhibited.
Transition metals (TMs) are d-block elements which occupy groups 3-12 in Periodic Table. IUPAC defines a TM as ‘an element whose atoms have partially filled d-shell, or which can give rise to cations with an incomplete d-shell’. The partially filled d-shell in TMs plays an important role in various chemical and physical properties of TMs. Although TM cations can form compounds with different anions, most of the TM containing compounds are metal oxides due to the large free energies for formation of oxides. Binary TM oxides adopt different kinds of structures among which rock salt (e.g. NiO), rutile (e.g. TiO2), and corundum (e.g. Cr2O3) are most common. Ternary TM oxides are also known to form in variety of structures with the perovskite (e.g. BaTiO3), and the spinel (e.g. MgFe2O4) structures being well known.
TM oxides exhibit a broad range of electronic and magnetic properties. TM oxides, at one end, display metallic behavior (e.g. ReO3, RuO2, LaNiO3) due to the delocalized electrons and at other end, show insulating behavior (e.g. NiO) due to the localized electrons. In between, TM oxides have semiconducting properties involving either the hopping of carriers (e.g. partially reduced TiO2, Nb2O5, WO3 and so on) or the electron excitation from the valence band to the conduction band (e.g. SnO2). TM oxides are known to have diverse magnetic properties:
diamagnetic (e.g. TiO2, ZrO2), paramagnetic (e.g. VO2, NbO2), ferromagnetic (e.g. CrO2, La0.67Ca0.33MnO3), ferrimagnetic (e.g. Fe3O4, MnFe2O4) and antiferromagnetic (e.g. NiO, LaCrO3). TM oxides with partially filled 3d-shell are expected to be ‘metallic’ according to Bloch-Wilson theory, but in practice they are Mott insulators (localized 3d electrons) because of correlation energy (U) involved in the transfer of d-electrons between adjacent sites. Certain TM oxides also show insulator-metal (I-M) transitions induced by change of temperature, pressure or composition. For example, VO2 and Ba2IrO4 are known for their temperature and pressure induced I-M transitions, respectively. La1-xSrxCoO3 becomes metal at a particular Sr concentration being one of the examples for composition-dependent I-M transition.
TM oxides are usually synthesized by conventional ceramic method in which stoichiometric mixture of starting materials is reacted at elevated temperatures. Multiple prolonged heating with intermittent grindings in ceramic method generally results in thermodynamically controlled products. The metastable phases which are of interest may not be obtained by ceramic method. Chimie douce/soft chemistry methods are generally adopted to stabilize the metastable phases. The guiding principle behind the chimie douce is to have kinetic control (rather than thermodynamic control) to realize metastable phases. Accordingly, metastable derivatives are obtained by choosing appropriate precursors, or adopting sol-gel and molten flux or ion exchange/intercalation methods.
The present thesis is devoted to an investigation of transition metal oxides towards development of functional materials exhibiting visible light absorption/emission and lithium insertion/extraction for cathode materials in lithium ion battery. TM oxides find application as photovoltaic materials, luminescent emission materials, photocatalysts, light absorption/pigment materials and so on, based on their optical properties. Ferroelectric TM oxides with perovskite structure [Green coloured (KNbO3)1-x (BaNi1/2Nb1/2O3-δ)x] are studied currently as photovoltaic materials which show high open circuit voltage (Voc = 3.5 V) despite very low short circuit current (Vsc = 40 nA cm-2). TM oxides are also known to
exhibit photoluminescent emission which could be due to the doping activator ions (e.g. MnII doped Zn2GeO4) or TM oxide (e.g. CaWO4) itself being self-activator. While the green and red emissions are common for TM oxides, blue emission is rare (e.g. Ar+ irradiated SrTiO3 is a blue emitter). Coloured TM oxides with band gap in visible region are employed as photocatalysts for solar water splitting (e.g. yellow BiVO4, yellow Ag3PO4, yellow TaON, red Fe2O3) and photo-oxidation of organic pollutants (e.g. TiO2-xNx and CaCu3Ti4O12). The coloured TM oxides also find application as pigments from early times, for example, Egyptian blue (CaCuSi4O10), Han blue (BaCuSi4O10), Han purple (BaCuSi2O6), Malachite green (Cu2CO3(OH)2), Ochre red (Fe2O3) and many others. A list of pigments based on TM oxides is given in Table 1. Pigment materials are applied as colouring materials in inks, dyes, paints, plastics, ceramics glazers, enamels and textiles.
Table 1. List of TM oxide based pigments and their colours
Pigment colour Compound
White Titanium dioxide (TiO2)
Black Iron oxide black (Fe3O4)
Red Iron oxide red (Fe2O3), Ca1-xLaxTaO2-xN1+x
(yellow-red)
Orange Iron oxide orange (Fe2O3)
Yellow Yellow ochre [FeO(OH)·H2O]
Green Malachite green [Cu2CO3(OH)2], Viridian
(Cr2O3. 2H2O), Y2BaCuO5
Blue Egyptian blue (CaCuSi4O10),Cobalt aluminate
(CoAl2O4), YIn1-xMnxO3
Purple Han purple (BaCuSi2O6)
Violet Cobalt phosphate [Co3(PO4)2]
Colours of the TM oxides arise from visible light absorption due to the ligand field d-d electronic transitions. Though d-d transitions are parity forbidden, the selection rules get relaxed due to different reasons such as symmetry reduction (due to distortion) and vibronic couplings. The colour of the TM oxides is influenced mainly by two factors (i) oxidation state of TM ion present and (ii) ligand field around the TM ion produced by anion geometry.
In order to develop new pigment oxides, our strategy was to choose colourless metal oxides having unusual (five coordinated geometry) or irregular/distorted (distorted octahedral/tetrahedral) coordination geometries around metal ion and produce coloured oxides by substituting 3d-TM ions at the metal ion site. We made a detailed study on the origin of the colour and pigment quality of the resulting coloured oxides.
In the present thesis, which has two parts, the first part (Part 1) discusses the development of 3d-TM ion substituted coloured oxides with potential for pigment applications.
Chapter 1.1 describes the purple inorganic pigment, YGa1-xMnxO3 (0 < x ≤ 0.10), based on the hexagonal YGaO3. The metastable series of oxides were prepared by a sol-gel technique where the dried gels, obtained from aqueous solutions of metal nitrates-citric acid mixtures, were calcined for a short duration in preheated furnace around 850°C/10 mins. The purple colour of the oxides arises from the specific trigonal bipyramidal ligand field around MnIII that obtains in the YGaO3 host. Other hexagonal RGaO3 hosts for R = Lu, Tm and Ho substituted with MnIII also produce similar purple coloured materials.
In Chapter 1.2, we present a study on substitution of 3d-TM ions in LiMgBO3 host [where Mg(II) has a trigonal bipyramidal (TBP) oxygen coordination)]. We find that single-phase materials are formed for LiMg1-xCo(II)xBO3 (0 < x ≤ 1.0), LiMg1-xNi(II)xBO3 (0 < x ≤ 0.1), LiMg1-xCu(II)xBO3 (0 < x ≤ 0.1) and also Li1-xMg1-xFe(III)xBO3 (0 < x ≤ 0.1) of which the Co(II) and Ni(II) derivatives are strongly coloured, purple-blue and beige-red
respectively, thus identifying TBP CoO5 and NiO5 as the new chromophores for these colours.
Chapter 1.3 describes the synthesis, crystal structures and optical absorption spectra/colours of 3d-TM substituted α-LiZnBO3 derivatives: α-LiZn1-xMIIxBO3 [MII = CoII (0 < x < 0.50), NiII (0 < x ≤ 0.05) and CuII (0 < x 0.10)] and α-Li1+xZn1-2xMIIIxBO3 [MIII = MnIII (0 < x ≤ 0.10) and FeIII (0 < x 0.25)]. The crystal structure of the host α-LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, giving rise to unique colours [blue for CoII, magenta for NiII and violet for CuII], that could be of significance for the development of new, inexpensive and environmentally-benevolent pigment materials, especially for the blue colour. Accordingly, the work indentifies distorted tetrahedral MO4 (M = Co, Ni, Cu) (together with a long M-O bond that gives a trigonal bipyramidal geometry) structural units as the new chromophores for the blue, magenta and violet colours respectively, in the α-LiZnBO3 host.
In Chapter 1.4, we describe the synthesis, crystal structures and optical absorption spectra of 3d-TM substituted spiroffite derivatives, Zn2-xMxTe3O8 (MII = Co, Ni, Cu; 0 < x ≤ 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620°C/12h. Rietveld refinement of the crystal structures from powder XRD data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/MII – O bonds (1.898 – 2.236 Å) and one longer Zn/MII– O bond (2.356 – 2.519 Å). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the
Zn/MII – O chromophores. We could not however prepare the fully-substituted M2Te3O8 (MII = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.
Red coloured materials are rare in nature. Li2MnO3 is a unique oxide with an unusual red colour imparted by MnIV ions. Chapter 1.5 describes a detailed experimental investigation of Li2MnO3 together with other related MnIV oxides that probes the red colour of Li2MnO3 as well as its photoluminescence. Optical absorption spectra reveal a strong band gap absorption with a sharp edge at ~ 610 nm and a transparent region between ~ 610 and ~ 650 nm that causes the red colour of Li2MnO3 samples. Octahedral MnIV ligand field transitions, corresponding to both MnIV at ideal sites and MnIV displaced to Li sites in the rock salt based layered structure of Li2MnO3, are observed in the excitation spectra of Li2MnO3 samples. Optical excitation at the ligand field transition energies produces tunable emission in the red-yellow-green region, rendering Li2MnO3 a unique MnIV oxide. The honeycomb ordered [LiMn6] units in the structure likely causes both the absorption and photoluminescence properties of Li2MnO3.
Lithium containing TM oxides with rock salt related structure are being investigated extensively for application as next generation cathode materials for Lithium ion batteries (LIBs). Recent research is focused on lithium-rich layered oxides (LLOs) which are solid solutions between Li2MO3 (where M = Ti, Mn and Ru) and LiMO2 (where M = Cr, Mn, Fe, Co, Ni). LLOs have excess lithium in the TM layer in addition to lithium in lithium layer of rock salt derived structure. LLOs have gained attention because of their higher discharge capacity in the range of ~ 250 mAhg-1. While most of the LLOs investigated so far contain 3d-TM ions (Mn, Fe, Co, Ni), recently there has been an interest in the study of the role of ruthenium in addition to 3d-TM ions. We have investigated ruthenium containing LLOs with a view to probe (i) the role of ruthenium and (ii) the concentration of excess lithium in the TM layers in producing higher discharge capacities. The results are discussed in the Part 2 of the thesis.Li5NiMnRuO8(Li[Li0.25Ni0.25Mn0.25Ru0.25]O2) form in the Li2RuO3 crystal
structure. Electrochemical studies indicate that the Co-containing oxides exhibit a higher initial discharge capacity (for e.g. ~ 180 mAhg-1 for Li4CoRuO6) as well as a higher reversible discharge capacity (~130 mAhg-1 for Li4CoRuO6) compared to the corresponding Ni-analogs. Participation of oxide ions (higher oxidation state of Ru) in the redox process could explain the higher discharge capacity during the first cycle. Reduced capacity (capacity fade) during the subsequent cycles could arise from the oxygen evolution due to the redox process (2O2- → 2O- → O2), which is not reversible. The present work shows that ruthenium incorporation in rock salt layered oxides along with Co/Ni appears to give a beneficial effect in producing a higher discharge capacity. In addition, the compounds crystallizing with the R-3m structure (related to LiCoO2) appear to give a better reversible capacity than the compounds crystallizing in the C2/c structures (Li2TiO3 and Li2RuO3).
|
4 |
High Capacity Porous Electrode Materials of Li-ion BatteriesPenki, Tirupathi Rao January 2014 (has links) (PDF)
Lithium-ion battery is attractive for various applications because of its high energy density. The performance of Li-ion battery is influenced by several properties of the electrode materials such as particle size, surface area, ionic and electronic conductivity, etc. Porosity is another important property of the electrode material, which influences the performance. Pores can allow the electrolyte to creep inside the particles and also facilitate volume expansion/contraction arising from intercalation/deintercalation of Li+ ions. Additionally, the rate capability and cycle-life can be enhanced. The following porous electrode materials are investigated.
Poorly crystalline porous -MnO2 is synthesized by hydrothermal route from a neutral aqueous solution of KMnO4 at 180 oC and the reaction time of 24 h. On heating, there is a decrease in BET surface area and also a change in morphology from nanopetals to clusters of nanorods. As prepared MnO2 delivers a high discharge specific capacity of 275 mAh g-1 at a specific current of 40 mA g-1 (C/5 rate). Lithium rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template. It has a well crystalline structure with a broadly distributed mesoporosity but low surface area. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g-1 is obtained at a discharge current of 30 mA g-1. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g-1 at a discharge current density of 30 mA g-1. Solid solutions of Li2MnO3 and LiMO2 (M=Mn, Ni, Co, Fe and their composites) are more attractive positive electrode materials because of its high capacity >200 mAh g-1.The solid solutions are prepared by microemulsion and polymer template route, which results in porous products. All the solid solution samples exhibit high discharge capacities with high rate capability.
Porous flower-like α-Fe2O3 nanostructures is synthesized by ethylene glycol mediated iron alkoxide as an intermediate and heated at different temperatures from 300 to 700 oC. The α-Fe2O3 samples possess porosity with high surface area and deliver discharge capacity values of 1063, 1168, 1183, 1152 and 968 mAh g-1 at a specific current of 50 mA g-1 when prepared at 300, 400, 500, 600 and 700 oC, respectively. Partially exfoliated and reduced graphene oxide (PE-RGO) is prepared by thermal exfoliation of graphite oxide (GO) under normal air atmosphere at 200-500 oC. Discharge capacity values of 771, 832, 1074 and 823 mAh g -1 are obtained with current density of 30 mA g-1 at 1st cycle for PE-RGO samples prepared at 200, 300, 400 and 500 oC, respectively. The electrochemical performance improves on increasing of exfoliation temperature, which is attributed to an increase in surface area. The high rate capability is attributed to porous nature of the material. Results of these studies are presented and discussed in the thesis.
|
Page generated in 0.0243 seconds