• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Is It More Advantageous to Administer Libqual+® Lite Over Libqual+®? an Analysis of Confidence Intervals, Root Mean Square Errors, and Bias

Ponce, Hector F. 08 1900 (has links)
The Association of Research Libraries (ARL) provides an option for librarians to administer a combination of LibQUAL+® and LibQUAL+® Lite to measure users' perceptions of library service quality. LibQUAL+® Lite is a shorter version of LibQUAL+® that uses planned missing data in its design. The present study investigates the loss of information in commonly administered proportions of LibQUAL+® and LibQUAL+® Lite when compared to administering LibQUAL+® alone. Data from previous administrations of LibQUAL+® protocol (2005, N = 525; 2007, N = 3,261; and 2009, N = 2,103) were used to create simulated datasets representing various proportions of LibQUAL+® versus LibQUAL+® Lite administration (0.2:0.8, 0.4:0.6. 0.5:0.5, 0.6:0.4, and 0.8:0.2). Statistics (i.e., means, adequacy and superiority gaps, standard deviations, Pearson product-moment correlation coefficients, and polychoric correlation coefficients) from simulated and real data were compared. Confidence intervals captured the original values. Root mean square errors and absolute and relative biases of correlations showed that accuracy in the estimates decreased with increase in percentage of planned missing data. The recommendation is to avoid using combinations with more than 20% planned missing data.

Page generated in 0.0297 seconds