• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecology of supralittoral lichens on Hong Kong rocky shores

Chu, Fung, Joanna., 朱鳳. January 1997 (has links)
published_or_final_version / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
2

Occurrence and properties of the multicopper oxidases laccase and tyrosinase in lichens.

Laufer, Zsanett. 06 November 2013 (has links)
The work presented in this thesis describes the occurrence and properties of two multicopper oxidases derived from lichens. Despite numerous data on laccases and tyrosinases in fungi and flowering plants, this is the first report of the occurrence of these enzymes in lichenized ascomycetes. Extracellular laccase and tyrosinase activity was measured in 50 species of lichens from different taxonomic groupings and contrasting habitats. Out of 27 species tested from suborder Peltigerineae, all displayed laccase and tyrosinase activity that correlated to each other, while activity was absent in species tested from other lichen groups. Identification of the enzymes as laccases and tyrosinases was confirmed by the ability of lichen thalli or leachates to readily metabolize substrates such as 2,2’-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS), syringaldazine and o-tolidine in case of laccase and L-dihydroxyphenylalanine (L-DOPA), Ltyrosine and epinephrine in case of tyrosinase in the absence of hydrogen peroxide. The activities of both enzymes were highly sensitive to cyanide and azide, and tyrosinase activity was sensitive to hexylresorcinol. Laccase activity had typical pH and temperature optima and an absorption spectrum with a peak at 614 nm. Tyrosinases could be activated by sodium dodecyl sulphate (SDS) and had typical tyrosinase molecular masses of approx. 60 kDa. The diversity of laccase isoforms in 20 lichen species from suborder Peltigerineae was investigated. The molecular masses of the active forms of most laccases varied between 135 and 190 kDa, although some lichens within the family Peltigeraceae had laccases with higher masses, typically varying from 200 to over 350 kDa. Most species contained one oligomeric laccase isoform. Desiccation and wounding stimulated laccase activity, while only wounding stimulated tyrosinase activity. The ability of laccases to decolorize dye is a classic attribute of laccases, and one with biotechnological potential. The ability of eight lichen species to decolourize different types of dyes was therefore tested. Interestingly, results showed that not only species belonging to suborder Peltigerineae but also species from other lichen group effectively decolourised dyes after 48 h suggesting that other oxidases appear to have ability to decolorize. Hopefully, our work could contribute to the better knowledge and application of lichen multicopper oxidases. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
3

Lichen response to the environment and forest structure in the western Cascades of Oregon

Martin, Erin P. 30 June 2005 (has links)
Lichens are an important part of the biota in western Oregon forests, where they perform valuable ecological roles and contribute significantly to biodiversity. Lichens in western Oregon are threatened by a number of factors including air pollution and land use practices. If we wish to maintain the persistence of lichens in future landscapes it is critical that we understand the responses of lichen communities and individual lichen species to the environment and forest structure. This dissertation explores factors that are related to differences in lichen community composition and the distributions of individual lichen species in the western Cascades of Oregon, using a large landscape scale data set. I sought to relate major gradients in lichen community composition to environmental factors, and describe differences in lichen communities with respect to forest age (Chapter 2). I found three major gradients in lichen communities at a landscape scale in the western Oregon Cascades. These gradients were related to climate as expressed by elevation and annual temperature, air quality, north-south position, the richness of epiphytic macrolichens, and forest age. I developed a rarity score, which can be used to identify hotspots of rare species diversity at a landscape scale (Chapter 3). I then built descriptive models of this rarity score to identify abiotic and biotic factors associated with the occurrence of rarity hotspots. I found that models of rarity score that used explanatory variables based on lichen community composition performed better than models that used explanatory variables based solely on environmental factors. I narrowed my focus to the level of individual species responses to the environment and forest structure by developing habitat models for 11 lichen species in the western Cascades (Chapter 4). We selected these species because they performed important ecological roles, were rare across the landscape and associated with old growth forests, or because their distributions were poorly understood. These models can be used to increase the efficiency of landscape level surveys for rare species, predict the response of these species to forest management practices, and understand factors associated with the distributions of these lichens. / Graduation date: 2006

Page generated in 0.077 seconds