• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectrally resolved, three-dimensional widefield microscopy

Jahr, Wiebke 26 June 2017 (has links) (PDF)
A major goal in biological imaging is to visualize interactions of different tissues, often fluorescently labeled, during dynamic processes. Only a few of these labels fit into the available spectral range without overlap, but can be separated computationally if the full spectrum of every single pixel is known. In medical imaging, hyperspectral techniques show promise to identify different tissue types without any staining. Yet, microscopists still commonly acquire spectral information either with filters, thus integrating over a few broad bands only, or point-wise, dispersing the spectra onto a multichannel detector, which is inherently slow. Light sheet fluorescence microscopy (LSFM) and optical projection tomography (OPT) are two techniques to acquire 3D microscopic data fast, photon-efficiently and gently on the specimen. LSFM works in fluorescence mode and OPT in transmission. Both are based on a fast widefield detection scheme where a 2D detector records the spatial information but leaves no room to acquire dispersed spectra. Hyperspectral imaging had not yet been demonstrated for either technique. In this work, I developed a line-scanning hyperspectral LSFM and an excitation scanning OPT to acquire 5D data (3D spatial, 1D temporal, 1D spectral) and optimized the performance of both setups to minimize acquisition times without sacrificing image contrast, spatial or spectral information. I implemented and assessed different evaluation pipelines to classify and unmix relevant features. I demonstrate the efficiency of my workflow by acquiring up to five fluorescent markers and the autofluorescence in \\zf and fruit fly embryos on my hyperspectral LSFM. I extracted both concentration maps and spectra for each of these fluorophores from the multidimensional data. The same methods were applied to investigate the transmission data from my spectral OPT, where I found evidence that OPT image formation is governed by refraction, whereas scattering and absorption only play a minor role. Furthermore, I have implemented a robust, educational LSFM on which laymen have explored the working principles of modern microscopies. This eduSPIM has been on display in the Technische Sammlungen Dresden for one year during the UNESCO international year of light. / Ein wichtiges Ziel biologischer Bildgebung ist die Visualisierung des Zusammenspiels von verschiedenen, meist fluoreszent markierten, Geweben bei dynamischen Prozessen. Nur wenige dieser Farbstoffe passen ohne Überlapp in das zur Verfügung stehende Spektrum. Sie können jedoch rechnerisch getrennt werden, wenn das gesamte Spektrum jedes Pixels bekannt ist. In medizinischen Anwendungen versprechen hyperspektrale Techniken, verschiedene Gewebetypen markierungsfrei zu identifizieren. Dennoch ist es in der Mikroskopie noch immer üblich, spektrale Information entweder mit Filtern über breiten Bändern zu integrieren, oder Punktspektren mithilfe von Dispersion zu trennen und auf einem Multikanaldetektor aufzunehmen, was inhärent langsam ist. Light Sheet Fluorescence Microscopy (LSFM) und Optical Projection Tomography (OPT) nehmen 3D Mikroskopiedaten schnell, photoneneffizient und sanft für die Probe auf. LSFM arbeitet mit Fluoreszenz, OPT in Transmission. Beide basieren auf schneller Weitfelddetektion, wobei die räumliche Information mit einem 2D Detektor aufgenommen wird, der keinen Raum lässt, um die getrennten Spektren zu messen. Hyperspektrale Bildgebung wurde bis jetzt für keine der zwei Techniken gezeigt. Ich habe ein hyperspektrales LSFM mit Linienabtastung und ein OPT mit Wellenlängenabtastung entwickelt, um 5D Daten (3D räumlich, 1D zeitlich, 1D spektral) aufzunehmen. Beide Aufbauten wurden hinsichtlich minimaler Aufnahmezeit optimiert, ohne dabei Kontrast, räumliche oder spektrale Auflösung zu opfern. Ich habe verschiedene Abläufe zum Klassifizieren und Trennen der Hauptkomponenten implementiert. Ich nehme bis zu fünf Fluorophore und Autofluoreszenz in Zebrafisch- und Fruchtfliegenembryos mit dem hyperspektralen LSFM auf und zeige die Effizienz des gesamten Ablaufes, indem ich Spektren und räumliche Verteilung aller Marker extrahiere. Die Transmissionsdaten des spektralen OPT werden mit denselben Methoden untersucht. Ich konnte belegen, dass die Bildformation im OPT massgeblich von Brechung bestimmt ist, und Streuung und Absorption nur einen geringen Beitrag leisten. Außerdem habe ich ein robustes, didaktisches LSFM gebaut, damit Laien die Funktionsweise moderner Mikroskopie erkunden können. Dieses eduSPIM war ein Jahr lang in den Technischen Sammlungen Dresden ausgestellt.
2

Spectrally resolved, three-dimensional widefield microscopy: in living zebrafish and fruit fly embryos

Jahr, Wiebke 30 May 2017 (has links)
A major goal in biological imaging is to visualize interactions of different tissues, often fluorescently labeled, during dynamic processes. Only a few of these labels fit into the available spectral range without overlap, but can be separated computationally if the full spectrum of every single pixel is known. In medical imaging, hyperspectral techniques show promise to identify different tissue types without any staining. Yet, microscopists still commonly acquire spectral information either with filters, thus integrating over a few broad bands only, or point-wise, dispersing the spectra onto a multichannel detector, which is inherently slow. Light sheet fluorescence microscopy (LSFM) and optical projection tomography (OPT) are two techniques to acquire 3D microscopic data fast, photon-efficiently and gently on the specimen. LSFM works in fluorescence mode and OPT in transmission. Both are based on a fast widefield detection scheme where a 2D detector records the spatial information but leaves no room to acquire dispersed spectra. Hyperspectral imaging had not yet been demonstrated for either technique. In this work, I developed a line-scanning hyperspectral LSFM and an excitation scanning OPT to acquire 5D data (3D spatial, 1D temporal, 1D spectral) and optimized the performance of both setups to minimize acquisition times without sacrificing image contrast, spatial or spectral information. I implemented and assessed different evaluation pipelines to classify and unmix relevant features. I demonstrate the efficiency of my workflow by acquiring up to five fluorescent markers and the autofluorescence in \\zf and fruit fly embryos on my hyperspectral LSFM. I extracted both concentration maps and spectra for each of these fluorophores from the multidimensional data. The same methods were applied to investigate the transmission data from my spectral OPT, where I found evidence that OPT image formation is governed by refraction, whereas scattering and absorption only play a minor role. Furthermore, I have implemented a robust, educational LSFM on which laymen have explored the working principles of modern microscopies. This eduSPIM has been on display in the Technische Sammlungen Dresden for one year during the UNESCO international year of light. / Ein wichtiges Ziel biologischer Bildgebung ist die Visualisierung des Zusammenspiels von verschiedenen, meist fluoreszent markierten, Geweben bei dynamischen Prozessen. Nur wenige dieser Farbstoffe passen ohne Überlapp in das zur Verfügung stehende Spektrum. Sie können jedoch rechnerisch getrennt werden, wenn das gesamte Spektrum jedes Pixels bekannt ist. In medizinischen Anwendungen versprechen hyperspektrale Techniken, verschiedene Gewebetypen markierungsfrei zu identifizieren. Dennoch ist es in der Mikroskopie noch immer üblich, spektrale Information entweder mit Filtern über breiten Bändern zu integrieren, oder Punktspektren mithilfe von Dispersion zu trennen und auf einem Multikanaldetektor aufzunehmen, was inhärent langsam ist. Light Sheet Fluorescence Microscopy (LSFM) und Optical Projection Tomography (OPT) nehmen 3D Mikroskopiedaten schnell, photoneneffizient und sanft für die Probe auf. LSFM arbeitet mit Fluoreszenz, OPT in Transmission. Beide basieren auf schneller Weitfelddetektion, wobei die räumliche Information mit einem 2D Detektor aufgenommen wird, der keinen Raum lässt, um die getrennten Spektren zu messen. Hyperspektrale Bildgebung wurde bis jetzt für keine der zwei Techniken gezeigt. Ich habe ein hyperspektrales LSFM mit Linienabtastung und ein OPT mit Wellenlängenabtastung entwickelt, um 5D Daten (3D räumlich, 1D zeitlich, 1D spektral) aufzunehmen. Beide Aufbauten wurden hinsichtlich minimaler Aufnahmezeit optimiert, ohne dabei Kontrast, räumliche oder spektrale Auflösung zu opfern. Ich habe verschiedene Abläufe zum Klassifizieren und Trennen der Hauptkomponenten implementiert. Ich nehme bis zu fünf Fluorophore und Autofluoreszenz in Zebrafisch- und Fruchtfliegenembryos mit dem hyperspektralen LSFM auf und zeige die Effizienz des gesamten Ablaufes, indem ich Spektren und räumliche Verteilung aller Marker extrahiere. Die Transmissionsdaten des spektralen OPT werden mit denselben Methoden untersucht. Ich konnte belegen, dass die Bildformation im OPT massgeblich von Brechung bestimmt ist, und Streuung und Absorption nur einen geringen Beitrag leisten. Außerdem habe ich ein robustes, didaktisches LSFM gebaut, damit Laien die Funktionsweise moderner Mikroskopie erkunden können. Dieses eduSPIM war ein Jahr lang in den Technischen Sammlungen Dresden ausgestellt.
3

Adaptive light sheet microscopy for the systematic analysis of mitotic spindle scaling in zebrafish

Berndt, Frederic Carl 28 March 2019 (has links)
Multicellular life is formed by an orchestrated interplay of processes on different scales in space and time. Observing and quantitatively measuring these processes in an intact, living organism requires gentle and adaptive imaging. One example of such a process is the scaling of the mitotic spindle during early development. The spindle segregates the chromosomes during cell division and the spindle length determines the positioning of the chromosomes in the successive daughter cells. Thus, adaptation of spindle size to cell size is crucial for proper functioning. Early development is an excellent phase to study spindle scaling since cells rapidly divide in the absence of growth. In this phase, the spindle can be studied in cells of the same organism changing its volume orders of magnitude. During early zebrafish embryogenesis, the mitotic spindle only appears for three minutes out of the fifteen minutes cell cycle. Quantifying these short-lived events in a living embryo requires flexible and adaptive multi-resolution recordings, which are impossible with any state-of-the-art microscope. In this thesis, I present two new techniques to adaptively image biological samples based on light sheet fluorescence microscopy (LSFM). First, I present a remote, contact-free positioning technique based on magnetic forces to orient the sample in the microscope. When imaging biological samples, there is often only one sample orientation that offers the best view on the region of interest. This preferred orientation typically changes over time as the specimen grows and develops. The contact-free positioning technique allows to always image specimens from the optimal viewing angle. I demonstrate the functionality of this method by 3D orientation of zebrafish embryos and zebrafish larvae. Second, I present a new type of LSFM that autonomously adapts its detection scheme to the sample state. This microscope contains an adaptable magnification module to map the development of the millimeter-sized zebrafish embryo and measure single-molecule dynamics of individual spindles in a single experiment. To automatically adapt the detection scheme, I trained a Convolution Neural Network to detect the cell cycle state of individual cells from acquired fluorescence images. Using this new type of LSFM, I demonstrate autonomous measurements of the mitotic spindle scaling in freely developing zebrafish embryos. / Multizelluläres Leben wird durch ein orchestriertes Zusammenspiel von Prozessen auf verschiedenen Skalen in Raum und Zeit gebildet. Beobachtung und quantitative Messungen dieser Vorgänge in einem intakten, lebenden Organismus erfordern schonende und adaptive Bildgebung. Ein Beispiel für einen solchen Prozess ist die Größenanpassung der mitotischen Spindel während der frühen Entwicklung. Die Spindel trennt die Chromosomen während der Zellteilung und die Spindellänge bestimmt die Positionierung der Chromosomen in den Tochterzellen. Daher ist die Anpassung der Spindelgröße an die Zellgröße entscheidend für die ordnungsgemäße Funktion. Die Phase der frühen Entwicklung eignet sich hervorragend zur Untersuchung der Spindel-Skalierung, da die Zellen sich schnell teilen ohne zu wachsen. Während der frühen Zebrafischembryogenese erscheint die Spindel nur drei Minuten innerhalb des fünfzehnminütigen Zellzyklus. Die Quantifizierung dieser kurzlebigen Ereignisse in einem lebenden Embryo erfordert flexible und anpassungsfähige Aufnahmen mit variabler Auflösung, die mit keinem Mikroskop nach dem aktuellen Stand der Technik möglich sind. In dieser Arbeit präsentiere ich zwei neue Techniken zur adaptiven Abbildung biologischer Proben basierend auf der Lichtblatt-Fluoreszenzmikroskopie (LSFM). Zuerst stelle ich eine berührungslose Positionierungstechnik vor, die auf Magnetkräften basiert, um die Probe im Mikroskop zu orientieren. Bei der Abbildung biologischer Proben gibt es oft nur eine Probenorientierung, welche die beste Sicht auf die Region von Interesse bietet. Diese Vorzugsorientierung ändert sich typischerweise mit der Zeit, wenn die Probe wächst und sich entwickelt. Die Positionierungstechnik ermöglicht es, Proben immer aus dem optimalen Betrachtungswinkel abzubilden. Zweitens stelle ich einen neuen Typ von LSFM vor, der sein Detektionsschema autonom an den Probenzustand anpasst. Dieses Mikroskop enthält ein anpassbares Vergrößerungsmodul, um die Entwicklung des millimetergroßen Zebrafischembryos abzubilden und die Einzelmoleküldynamik einzelner Spindeln in einem einzigen Experiment zu messen. Um die Detektion automatisch anzupassen, trainierte ich ein Convolutional Neural Network, um den Zellzyklusstatus einzelner Zellen anhand der aufgenommenen Fluoreszenzbilder zu erkennen. Mit diesem neuen LSFM-Typ demonstriere ich autonome Messungen der Spindel-Skalierung in sich frei entwickelnden Zebrafischembryonen.

Page generated in 0.0538 seconds