Spelling suggestions: "subject:"eie croups anda algebras"" "subject:"eie croups anda álgebras""
1 |
Problems in Lie rings and groupsGroves, Daniel January 2000 (has links)
We construct a Lie relator which is not an identical Lie relator. This is the first known example of a non-identical Lie relator. Next we consider the existence of torsion in outer commutator groups. Let L be a free Lie ring. Suppose that 1 < i ≤ j ≤ 2i and i ≤ k ≤ i + j + 1. We prove that L/[L<sup>j</sup>, L<sup>i</sup>, L<sup>k</sup><./em>] is torsion free. Also, we prove that if 1 < i ≤ j ≤ 2i and j ≤ k ≤ l ≤ i + j then L/[L<sup>j</sup>, L<sup>i</sup>, L<sup>k</sup>, L<sup>l</sup>] is torsion free. We then prove that the analogous groups, namely F/[γ<sub>j</sub>(F),γ<sub>i</sub>(F),γ<sub>k</sub>(F)] and F/[γ<sub>j</sub>(F),γ<sub>i</sub>(F),γ<sub>k</sub>(F),γ<sub>l</sub>(F)] (under the same conditions for i, j, k and i, j, k, l respectively), are residually nilpotent and torsion free. We prove the existence of 2-torsion in the Lie rings L/[L<sup>j</sup>, L<sup>i</sup>, L<sup>k</sup>] when 1 ≤ k < i,j ≤ 5, and thus show that our methods do not work in these cases. Finally, we consider the order of finite groups of exponent 8. For m ≥ 2, we define the function T(m,n) by T(m,1) = m and T(m,k + 1) = m<sup>T(m,k)</sup>. We prove that if G is a finite m-generator group of exponent 8 then |G| ≤ T(m, 7<sup>471</sup>), improving upon the best previously known bound of T(m, 8<sup>88</sup>).
|
2 |
Symmetric subgroups of automorphism groups of compact simple Lie algebras /Yu, Jun. January 2009 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2009. / Includes bibliographical references (p. 47-48).
|
3 |
Symmetry Representations in the Rigged Hilbert Space Formulation ofSujeewa Wickramasekara, sujeewa@physics.utexas.edu 14 February 2001 (has links)
No description available.
|
4 |
On the Representations of Lie Groups and Lie Algebras in Rigged HilbertSujeewa Wickramasekara, sujeewa@physics.utexas.edu 14 February 2001 (has links)
No description available.
|
5 |
Subalgebras maximais das álgebras de Lie semisimples, quebra de simetria e o código genético / Maximal Sub-algebras of Semi-simple Lie Algebras, Symmetry Breaking and the Genetic CodeFernando Martins Antoneli Junior 12 August 1998 (has links)
O propósito deste trabalho é dar uma contribuição ao projeto iniciado por Hornos & Hornos que visa explicar as degenerescências do código genético como resultado de sucessivas quebras de simetria ocorridas durante sua evolução. O modelo matemático usado requer a construção de todas as representações irredutíveis de dimensão 64 das álgebras de Lie simples (chamadas representações de códons) e a análise de suas regras de ramicação sob redução a subalgebras. A classicação de todas as possibilidades é baseada na classicação das subalgebras maximais das álgebras de Lie semisimples obtida por Dynkin. No presente trabalho, os resultados de Dynkin são apresentados em linguagem e notação moderna e são aplicados ao problema de construir todas as possíveis cadeias de subalgebras maximais das álgebras de Lie simples B_6 = so(13) e D_7 = so(14) e de identicar aquelas que reproduzem as degenerescências do código genético. / The purpose of this work is to make a contribution to the project initiated by Hornos & Hornos which aims at explaining the degeneracy of the genetic code as the result of a sequence of symmetry breaking that occurred during its evolution. The mathematical model employed requires the construction of all 64-dimensional irreducible representations of simple Lie algebras (called codon representations) and the analysis of their branching rules under reduction to sub-algebras. The classification of all possibilities is based on Dynkins classification of the maximal sub-algebras of semi-simple Lie algebras. In the present work, Dynkins results are presented in modern language and notation and are applied to the problem of constructing all possible chains of maximal sub-algebras of the simple Lie algebras B_6 = so(13) and D_7 = so(14) and of identifying all those that reproduce the degeneracies of the genetic code.
|
6 |
Subalgebras maximais das álgebras de Lie semisimples, quebra de simetria e o código genético / Maximal Sub-algebras of Semi-simple Lie Algebras, Symmetry Breaking and the Genetic CodeAntoneli Junior, Fernando Martins 12 August 1998 (has links)
O propósito deste trabalho é dar uma contribuição ao projeto iniciado por Hornos & Hornos que visa explicar as degenerescências do código genético como resultado de sucessivas quebras de simetria ocorridas durante sua evolução. O modelo matemático usado requer a construção de todas as representações irredutíveis de dimensão 64 das álgebras de Lie simples (chamadas representações de códons) e a análise de suas regras de ramicação sob redução a subalgebras. A classicação de todas as possibilidades é baseada na classicação das subalgebras maximais das álgebras de Lie semisimples obtida por Dynkin. No presente trabalho, os resultados de Dynkin são apresentados em linguagem e notação moderna e são aplicados ao problema de construir todas as possíveis cadeias de subalgebras maximais das álgebras de Lie simples B_6 = so(13) e D_7 = so(14) e de identicar aquelas que reproduzem as degenerescências do código genético. / The purpose of this work is to make a contribution to the project initiated by Hornos & Hornos which aims at explaining the degeneracy of the genetic code as the result of a sequence of symmetry breaking that occurred during its evolution. The mathematical model employed requires the construction of all 64-dimensional irreducible representations of simple Lie algebras (called codon representations) and the analysis of their branching rules under reduction to sub-algebras. The classification of all possibilities is based on Dynkins classification of the maximal sub-algebras of semi-simple Lie algebras. In the present work, Dynkins results are presented in modern language and notation and are applied to the problem of constructing all possible chains of maximal sub-algebras of the simple Lie algebras B_6 = so(13) and D_7 = so(14) and of identifying all those that reproduce the degeneracies of the genetic code.
|
7 |
Lie methods in pro-p groupsSnopçe, Ilir. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Mathematical Sciences, 2009. / Includes bibliographical references.
|
8 |
Lieovy grupy a jejich fyzikální aplikace / Lie groups and their physical applicationsKunz, Daniel January 2020 (has links)
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
|
Page generated in 0.0692 seconds