• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 32
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 199
  • 199
  • 63
  • 53
  • 36
  • 22
  • 21
  • 21
  • 20
  • 20
  • 20
  • 19
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Extended affine lie algebras and extended affine weyl groups

Azam, Saeid 01 January 1997 (has links)
This thesis is about extended affine Lie algebras and extended affine Weyl groups. In Chapter I, we provide the basic knowledge necessary for the study of extended affine Lie algebras and related objects. In Chapter II, we show that the well-known twisting phenomena which appears in the realization of the twisted affine Lie algebras can be extended to the class of extended affine Lie algebras, in the sense that some extended affine Lie algebras (in particular nonsimply laced extended affine Lie algebras) can be realized as fixed point subalgebras of some other extended affine Lie algebras (in particular simply laced extended affine Lie algebras) relative to some finite order automorphism. We show that extended affine Lie algebras of type A<sub>1</sub>, B, C and BC can be realized as twisted subalgebras of types A<sub>§¤</sub>(l ¡Ã 2) and D algebras. Also we show that extended affine Lie algebras of type BC can be realized as twisted subalgebras of type C algebras. In Chapter III, the last chapter, we study the Weyl groups of reduced extended affine root systems. We start by describing the extended affine Weyl group as a semidirect product of a finite Weyl group and a Heisenberg-like normal subgroup. This provides a unique expression for the Weyl group elements which in turn leads to a presentation of the Weyl group, called a presentation by conjugation. Using a new notion, called the index, which is an invariant of the extended affine root systems, we show that one of the important features of finite and affine root systems (related to Weyl group) holds for the class of extended affine root systems. We also show that extended affine Weyl groups (of index zero) are homomorphic images of some indefinite Weyl groups where the homomorphism and its kernel are given explicitly.
122

Lie methods in pro-p groups

Snopçe, Ilir. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Department of Mathematical Sciences, 2009. / Includes bibliographical references.
123

Spatially-homogeneous Vlasov-Einstein dynamics

Okabe, Takahide 05 October 2012 (has links)
The influence of matter described by the Vlasov equation, on the evolution of anisotropy in the spatially-homogeneous universes, called the Bianchi cosmologies, is studied. Due to the spatial-homogeneity, the Einstein equations for each Bianchi Type are reduced to a set of coupled ordinary differential equations, which has Hamiltonian form with the metric components being the canonical coordinates. In the vacuum Bianchi cosmologies, it is known that a curvature potential, which comes from the symmetries of the three-dimensional Lie groups, determines the basic properties of the evolution of anisotropy. In this work, matter potentials are constructed for Vlasov matter. They are obtained by first introducing a new matter action principle for the Vlasov equation, in terms of a conjugate pair of functions, and then enforcing the symmetry to obtain a reduction. This yields an expression for the matter potential in terms of the phase space density, which is further reduced by assuming cold streaming matter. Some vacuum Bianchi cosmologies and Type I with Vlasov matter are compared. It is shown that the Vlasov-matter potential for cold streaming matter results in qualitatively distinct dynamics from the well-known vacuum Bianchi cosmologies. / text
124

First integrals for the Bianchi universes : supplementation of the Noetherian integrals with first integrals obtained by using Lie symmetries.

Pantazi, Hara. January 1997 (has links)
No abstract available. / Thesis (M.Sc.)-University of Natal, 1997.
125

Ermakov systems : a group theoretic approach.

Govinder, Kesh S. January 1993 (has links)
The physical world is, for the most part, modelled using second order ordinary differential equations. The time-dependent simple harmonic oscillator and the Ermakov-Pinney equation (which together form an Ermakov system) are two examples that jointly and separately describe many physical situations. We study Ermakov systems from the point of view of the algebraic properties of differential equations. The idea of generalised Ermakov systems is introduced and their relationship to the Lie algebra sl(2, R) is explained. We show that the 'compact' form of generalized Ermakov systems has an infinite dimensional Lie algebra. Such algebras are usually associated only with first order equations in the context of ordinary differential equations. Apart from the Ermakov invariant which shares the infinite-dimensional algebra of the 'compact' equation, the other three integrals force the dimension of the algebra to be reduced to the three of sl(2, R). Subsequently we establish a new class of Ermakov systems by considering equations invariant under sl(2, R) (in two dimensions) and sl(2, R) EB so(3) (in three dimensions). The former class contains the generalized Ermakov system as a special case in which the force is velocity-independent. The latter case is a generalization of the classical equation of motion of the magnetic monopole which is well known to possess the conserved Poincare vector. We demonstrate that in fact there are three such vectors for all equations of this type. / Thesis (M.Sc.)-University of Natal, 1993.
126

Noether's theorem and first integrals of ordinary differential equations.

Moyo, Sibusiso. January 1997 (has links)
The Lie theory of extended groups is a practical tool in the analysis of differential equations, particularly in the construction of solutions. A formalism of the Lie theory is given and contrasted with Noether's theorem which plays a prominent role in the analysis of differential equations derivable from a Lagrangian. The relationship between the Lie and Noether approach to differential equations is investigated. The standard separation of Lie point symmetries into Noetherian and nonNoetherian symmetries is shown to be irrelevant within the context of nonlocality. This also emphasises the role played by nonlocal symmetries in such an approach. / Thesis (M.Sc.)-University of Natal, Durban, 1997.
127

A Diagrammatic Description of Tensor Product Decompositions for SU(3)

Wesslen, Maria 23 February 2010 (has links)
The direct sum decomposition of tensor products for SU(3) has many applications in physics, and the problem has been studied extensively. This has resulted in many decomposition methods, each with its advantages and disadvantages. The description given here is geometric in nature and it describes both the constituents of the direct sum and their multiplicities. In addition to providing decompositions of specific tensor products, this approach is very well suited to studying tensor products as the parameters vary, and drawing general conclusions. After a description and proof of the method, several applications are discussed and proved. The decompositions are also studied further for the special cases of tensor products of an irreducible representation with itself or with its conjugate. In particular, questions regarding multiplicities are considered. As an extension of this diagrammatic method, the repeated tensor product of N copies of the fundamental representation is studied, and a method for its decomposition is provided. Again, questions regarding multiplicities are considered.
128

Algebraic properties of ordinary differential equations.

Leach, Peter Gavin Lawrence. January 1995 (has links)
In Chapter One the theoretical basis for infinitesimal transformations is presented with particular emphasis on the central theme of this thesis which is the invariance of ordinary differential equations, and their first integrals, under infinitesimal transformations. The differential operators associated with these infinitesimal transformations constitute an algebra under the operation of taking the Lie Bracket. Some of the major results of Lie's work are recalled. The way to use the generators of symmetries to reduce the order of a differential equation and/or to find its first integrals is explained. The chapter concludes with a summary of the state of the art in the mid-seventies just before the work described here was initiated. Chapter Two describes the growing awareness of the algebraic properties of the paradigms of differential equations. This essentially ad hoc period demonstrated that there was value in studying the Lie method of extended groups for finding first integrals and so solutions of equations and systems of equations. This value was emphasised by the application of the method to a class of nonautonomous anharmonic equations which did not belong to the then pantheon of paradigms. The generalised Emden-Fowler equation provided a route to major development in the area of the theory of the conditions for the linearisation of second order equations. This was in addition to its own interest. The stage was now set to establish broad theoretical results and retreat from the particularism of the seventies. Chapters Three and Four deal with the linearisation theorems for second order equations and the classification of intrinsically nonlinear equations according to their algebras. The rather meagre results for systems of second order equations are recorded. In the fifth chapter the investigation is extended to higher order equations for which there are some major departures away from the pattern established at the second order level and reinforced by the central role played by these equations in a world still dominated by Newton. The classification of third order equations by their algebras is presented, but it must be admitted that the story of higher order equations is still very much incomplete. In the sixth chapter the relationships between first integrals and their algebras is explored for both first order integrals and those of higher orders. Again the peculiar position of second order equations is revealed. In the seventh chapter the generalised Emden-Fowler equation is given a more modern and complete treatment. The final chapter looks at one of the fundamental algebras associated with ordinary differential equations, the three element 8£(2, R), which is found in all higher order equations of maximal symmetry, is a fundamental feature of the Pinney equation which has played so prominent a role in the study of nonautonomous Hamiltonian systems in Physics and is the signature of Ermakov systems and their generalisations. / Thesis (Ph.D.)-University of Natal, 1995.
129

A classification of second order equations via nonlocal transformations.

Edelstein, R. M. January 2000 (has links)
The study of second order ordinary differential equations is vital given their proliferation in mechanics. The group theoretic approach devised by Lie is one of the most successful techniques available for solving these equations. However, many second order equations cannot be reduced to quadratures due to the lack of a sufficient number of point symmetries. We observe that increasing the order will result in a third order differential equation which, when reduced via an alternate symmetry, may result in a solvable second order equation. Thus the original second order equation can be solved. In this dissertation we will attempt to classify second order differential equations that can be solved in this manner. We also provide the nonlocal transformations between the original second order equations and the new solvable second order equations. Our starting point is third order differential equations. Here we concentrate on those invariant under two- and three-dimensional Lie algebras. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
130

A Diagrammatic Description of Tensor Product Decompositions for SU(3)

Wesslen, Maria 23 February 2010 (has links)
The direct sum decomposition of tensor products for SU(3) has many applications in physics, and the problem has been studied extensively. This has resulted in many decomposition methods, each with its advantages and disadvantages. The description given here is geometric in nature and it describes both the constituents of the direct sum and their multiplicities. In addition to providing decompositions of specific tensor products, this approach is very well suited to studying tensor products as the parameters vary, and drawing general conclusions. After a description and proof of the method, several applications are discussed and proved. The decompositions are also studied further for the special cases of tensor products of an irreducible representation with itself or with its conjugate. In particular, questions regarding multiplicities are considered. As an extension of this diagrammatic method, the repeated tensor product of N copies of the fundamental representation is studied, and a method for its decomposition is provided. Again, questions regarding multiplicities are considered.

Page generated in 0.0944 seconds