Spelling suggestions: "subject:"life cycle engineering"" "subject:"life cycle ingineering""
1 |
An integrated methodology for assessing physical and technological life of products for reuseRugrungruang, Fatida, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Strategies for reuse of components are important in order to create a closed loop manufacturing system. Over decades, the notion has been gaining ground due to environmental and legislative reasons. Reuse of components is desirable and in many cases might be economically beneficial. However, the implementation of reuse strategies has been hindered by the requirement of reliable methodologies to assess the remaining life and reuse potential of used components. The estimation of the remaining life is problematic as the useful life of a component is affected by several causes of obsolescence. The common causes are due to physical and technological issues. So far, little research has attempted to address these issues simultaneously, and integrating them. This thesis seeks to develop methodologies that aid in predicting the integrated remaining lifetime of used components. There are three core parts of this research. First, the methodology determines the remaining life of used components from the physical lifetime perspective. This was derived from the estimation of physical failure using failure rate data, and the statistical analysis of usage intensity age as obtained from customers survey. Second, the research presents the use of the technological forecasting technique to predict the remaining technological life. As it is influenced by the technology progress, the forecast was developed on the basis of product technology clusters and market trend extrapolation analysis. Finally, the resulting estimations from the two aspects were combined to obtain an integrated assessment for estimating the remaining life of components. The potential for components in a product to be reused is justified when the remaining life is greater than the average expected lifespan of the product. Two cases of domestic appliances televisions and washing machines were used to highlight and demonstrate the validity of the proposed methodology. The results show that the proposed method provides the practitioners with a promising tool for end-of-life decision making. This is in particularly attractive when used as a preliminary decision support tool prior to the time consuming and costly processes such as disassembly and quality testing.
|
2 |
An integrated methodology for assessing physical and technological life of products for reuseRugrungruang, Fatida, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2008 (has links)
Strategies for reuse of components are important in order to create a closed loop manufacturing system. Over decades, the notion has been gaining ground due to environmental and legislative reasons. Reuse of components is desirable and in many cases might be economically beneficial. However, the implementation of reuse strategies has been hindered by the requirement of reliable methodologies to assess the remaining life and reuse potential of used components. The estimation of the remaining life is problematic as the useful life of a component is affected by several causes of obsolescence. The common causes are due to physical and technological issues. So far, little research has attempted to address these issues simultaneously, and integrating them. This thesis seeks to develop methodologies that aid in predicting the integrated remaining lifetime of used components. There are three core parts of this research. First, the methodology determines the remaining life of used components from the physical lifetime perspective. This was derived from the estimation of physical failure using failure rate data, and the statistical analysis of usage intensity age as obtained from customers survey. Second, the research presents the use of the technological forecasting technique to predict the remaining technological life. As it is influenced by the technology progress, the forecast was developed on the basis of product technology clusters and market trend extrapolation analysis. Finally, the resulting estimations from the two aspects were combined to obtain an integrated assessment for estimating the remaining life of components. The potential for components in a product to be reused is justified when the remaining life is greater than the average expected lifespan of the product. Two cases of domestic appliances televisions and washing machines were used to highlight and demonstrate the validity of the proposed methodology. The results show that the proposed method provides the practitioners with a promising tool for end-of-life decision making. This is in particularly attractive when used as a preliminary decision support tool prior to the time consuming and costly processes such as disassembly and quality testing.
|
3 |
Engineering change management in a large steel manufacturing company / Duan du ToitDu Toit, Duan January 2014 (has links)
Engineering is inherently a process of constant change. The process of managing engineering changes is however, not a new topic and it is well defined and implemented in various other engineering management philosophies. Yet, on its own, it still remains a very challenging problem to organisations.
This research examines the applicability of engineering change management to a large steel manufacturing company who identified the lack of an engineering change management system as the main contributing factor of numerous problems the company experienced over time. The study sets out to determine the high level understanding, the level- and sophistication of practical implementation and quality (identified problems with existing, or the lack of existing systems) of the engineering change management procedures. The study also compared how three surveyed companies relate in terms of their engineering change management systems and how the companies relate to the academic principals found in literature. Furthermore everyday user experience was measured to determine what aspects of engineering change is important and what needed improvement
As part of the research, literature was reviewed and it was found that various authors, practitioners and academics agreed that engineering change management is increasingly important as an engineering management item. The literature revealed high-level requirements, models and constituents that are required for successful engineering change management.
A questionnaire survey was developed as the experiment to measure how engineering change management was perceived practically. The aspects and phases listed from literature were examined and the perceptions, experience and feedback from the engineers that face engineering changes on a daily basis was determined.
The general understanding and feeling towards their engineering change management was analysed and used to identify areas of common problems. The two other surveyed companies: a petrochemical company and a specialised product company provided means to determine if the process of engineering change management could be generalised and applied to the large steel manufacturing company. The analysis of the results of the survey provided valuable information that was used to conclude why some companies were able to achieve success with their engineering change management procedures and why others failed or struggled.
The research effectively showed how engineering change management is perceived both negatively and positively in industry and identified common areas where improvement can be made. Furthermore, it can be concluded that engineering change management remained generic from a high-level and would thus be applicable to the large steel manufacturing company. The study also determined that engineering change management can effectively be used to mitigate and reduce the effects of uncontrolled changes that were listed by the large steel manufacturing company. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2014
|
4 |
Engineering change management in a large steel manufacturing company / Duan du ToitDu Toit, Duan January 2014 (has links)
Engineering is inherently a process of constant change. The process of managing engineering changes is however, not a new topic and it is well defined and implemented in various other engineering management philosophies. Yet, on its own, it still remains a very challenging problem to organisations.
This research examines the applicability of engineering change management to a large steel manufacturing company who identified the lack of an engineering change management system as the main contributing factor of numerous problems the company experienced over time. The study sets out to determine the high level understanding, the level- and sophistication of practical implementation and quality (identified problems with existing, or the lack of existing systems) of the engineering change management procedures. The study also compared how three surveyed companies relate in terms of their engineering change management systems and how the companies relate to the academic principals found in literature. Furthermore everyday user experience was measured to determine what aspects of engineering change is important and what needed improvement
As part of the research, literature was reviewed and it was found that various authors, practitioners and academics agreed that engineering change management is increasingly important as an engineering management item. The literature revealed high-level requirements, models and constituents that are required for successful engineering change management.
A questionnaire survey was developed as the experiment to measure how engineering change management was perceived practically. The aspects and phases listed from literature were examined and the perceptions, experience and feedback from the engineers that face engineering changes on a daily basis was determined.
The general understanding and feeling towards their engineering change management was analysed and used to identify areas of common problems. The two other surveyed companies: a petrochemical company and a specialised product company provided means to determine if the process of engineering change management could be generalised and applied to the large steel manufacturing company. The analysis of the results of the survey provided valuable information that was used to conclude why some companies were able to achieve success with their engineering change management procedures and why others failed or struggled.
The research effectively showed how engineering change management is perceived both negatively and positively in industry and identified common areas where improvement can be made. Furthermore, it can be concluded that engineering change management remained generic from a high-level and would thus be applicable to the large steel manufacturing company. The study also determined that engineering change management can effectively be used to mitigate and reduce the effects of uncontrolled changes that were listed by the large steel manufacturing company. / MIng (Development and Management Engineering), North-West University, Potchefstroom Campus, 2014
|
5 |
Development of a Life Cycle Impact Assessment procedure for Life Cycle Management in South AfricaBrent, Alan Colin 15 September 2004 (has links)
Competitive industries in the manufacturing sector have a holistic Life Cycle Management (LCM) view of business practices. Life Cycle Assessment (LCA), which forms part of the LCM approach, is increasingly used as a decision support tool in the South African manufacturing industry. The Life Cycle Impact Assessment (LCIA) phase of the LCA tool has been standardised within the ISO 14000 family and aims to quantify the environmental impacts of economic activities. A number of LCIA methodologies have been developed in Europe, which can be applied directly when life cycle systems are assessed. The LCIA procedures that are most commonly used in the South African manufacturing industry include the CML, Ecopoints, EPS and Eco-indicators 95 and 99 procedures. The five European methods are evaluated based on the applicability of the respective classification, characterisation, normalisation and weighting elements for the South African situation. The evaluation and comparison is further based on a cradle-to-gate Screening Life Cycle Assessment (SLCA) case study of the production of dyed two-fold wool yarn in South Africa. Shortcomings are identified with the European methodologies in the South African context in terms of comprehensiveness and modelling approaches. A LCIA framework and calculation procedure, termed the Resource Impact Indicator (RII) model, is subsequently proposed for South Africa, which is based on the protection of four natural resource groups: water, air, land, and mined abiotic resources. A distance-to-target approach is used for the normalisation of midpoint categories, which focuses on the ambient quality and quantity objectives for the four resource groups. The quality and quantity objectives are determined for defined South African Life Cycle Assessment (SALCA) regions and take into account endpoint or damage targets. Following the precautionary approach, RIIs are calculated for the resource groups from conventional Life Cycle Inventories (LCIs). The calculation of the RIIs ensures that all natural resources that are important from a South African perspective are duly considered in a LCIA. The results of a LCIA are consequently not reliant on detailed LCIs and the number of midpoint categories that converge on a single resource group. The proposed model is evaluated with the SLCA wool case study. The case study establishes the importance of region-specificity, for LCIs and LCIAs. The proposed LCIA model further demonstrates reasonable ease of communication of LCIA results to decision-makers or managers. Subjective weighting values for the resource groups are also proposed, based on survey results from manufacturing industry sectors in the South African automotive value chain, and the expenditure of the South African national government on environmental issues. The subjective weighting values are used to calculate overall Environmental Performance Resource Impact Indicators (EPRIIs) when comparing life cycle systems with each other. The EPRII approach is applied to a specific LCM problem in the South African context, i.e. evaluating and comparing environmental performance for supply chain management purposes in the developing country context. Thereby, RIIs are provided for key Cleaner Production process parameters in the South Africa context: water usage, energy usage, and waste produced per manufactured product. / Thesis (PhD (Engineering and Technology Management))--University of Pretoria, 2005. / Graduate School of Technology Management (GSTM) / unrestricted
|
6 |
Berücksichtigung der Energieeffizienz der Fertigung in Konstruktion und Planung: Energieeffizienzbewertung in der Produktfertigung: Von innen nach außen, vom Kern zur HülleMose, Christian 02 August 2021 (has links)
Produktivitätssteigerung und Effizienzsteigerung sind Ziele, die durch marktwirtschaftlichen Wettbewerb vielfach zum Standardrepertoire der Entwicklung sowie der kontinuierlichen Verbesserung gehören. Trotzdem besteht hinsichtlich der Energieeffizienz in der Produktion noch immer dringender Handlungsbedarf.
Auch wenn ein großer Teil aller Umweltauswirkungen eines Produktes in Entwicklung und Konstruktion festgelegt werden und in der Nutzungsphase anfallen, besteht der Handlungsbedarf zunächst in der Produktion. Ohne Transparenz hinsichtlich des verursachten Energiebedarfs zur Herstellung eines Produktes in der Produktion, kann dieser in der Konstruktion nicht berücksichtigt und daher nicht zielgerichtet minimiert werden. Weiterhin werden sehr viele Produkte für die Industrie wiederum in der Produktion eingesetzt und sind damit in ihrer Lebensphase Verursacher des Energiebedarfs in der Herstellungsphase der nächsten Generation von Produkten. Gegenstand dieser Arbeit ist es die Grundlage zur zielgerichteten Erfassung und Dokumentation des Energieeinsatzes in der Produktion am Beispiel von Prozessketten rund um Fügeprozesse zu untersuchen und einen Kennwert zu entwickeln, der in der Produktion erfasst und in der Konstruktion sowie der Arbeitsvorbereitung verwendet werden kann, um den Energiebedarf zunächst zu beurteilen und im Weiteren nachhaltig zu reduzieren.
Diese Arbeit liefert das Werkzeug, um Transparenz zu schaffen und damit im Folgenden den produktspezifischen Energiebedarf in der Produktion zu reduzieren. Im Ergebnis wird ein Kennwert entwickelte der zusätzlich geeignet ist als dynamischer Leistungsindikator in der Prozessoptimierung und im Fabrikbetrieb verwendet zu werden.:1 Einleitung
1.1 Zielsetzung
1.2 Abgrenzung des Betrachtungsbereiches
2 Energie im Produktlebenszyklus – Stand der Technik
2.1 Produktlebenszyklus
2.1.1 Lebenszyklusanalyse
2.1.2 Kumulierter Energieaufwand (KEA)
2.1.3 Produktentwicklung und Konstruktion
2.2 Energie- und ressourceneffiziente Produktion
2.3 Prozessketten
2.4 Resümee der Analysen des Stands der Technik
3 Fügeprozesse im Produktlebenszyklus – eine
naturwissenschaftliche Betrachtung
3.1 Energie im Schweißprozess
3.2 Schweißtechnologien im Zentrum der Betrachtung
3.2.1 Metallschutzgasschweißen
3.2.2 Laserschweißen
3.2.3 Reibrührschweißen
3.2.4 Hybridisierung von Schweißverfahren
3.3 Fügeprozessketten
3.3.1 Vorbereitung und Nachbereitung
3.3.2 Trennen
3.3.3 Spanende Bearbeitung - Nahtvorbereitung
3.3.4 Richten
3.3.5 Reinigen
3.4 Energieeinsatz in Fügeprozessen
3.5 Energieeffizienz
3.5.1 Physikalische Betrachtung
3.5.2 Thermodynamische Analyse
3.5.3 Primär-Sekundär-Analyse
4 Handlungsbedarf
5 Energieeffizienz in Fügeprozessketten
5.1 Kritische Diskussion des Kennwertes der Streckenenergie
5.2 Definition des Kennwertes des spezifischen Energiebedarfs
5.3 Berechnung von spezifischen Energiebedarfen
5.3.1 Betriebszustände
5.3.2 Systemgrenze
5.3.3 Berücksichtigung von nicht-elektrischen Energieformen in der
Bilanzierung
5.3.4 Elektrisches Äquivalent von Energiebedarfen aller Art
5.3.5 Unterscheidung primärer und sekundärer Verbraucher
5.3.6 Unterscheidung dynamischer und statischer Energiebedarfe
5.4 Energiemesssystem
5.5 Bestimmung von Energieprofilen einzelner Fertigungsverfahren
5.5.1 Wirkungsgradketten bei Schweißprozessen
5.5.2 Steckdoseneffizienz
5.5.3 „Verlustarten“
5.5.4 Übertragung auf verwandte Prozessvarianten
5.6 Energiedaten von Alternativprozessen
5.6.1 Vorgehen bei andersartigen Technologien
5.6.2 Entwicklung einer alternativen Herangehensweise
5.7 Reichweite der Energieprofile auf Ebene einer Fertigungstechnologie
5.8 Wertschöpfung an „Verlustleistungen“
6 Anwendung
6.1 Betrachtung der Prozesskette
6.2 Berechnung spezifischen Energiebedarfs für das MIG-Schweißen
6.2.1 Unterscheidung primärer und sekundärer Verbraucher
6.3 Berechnung des spezifischen FSW-Energiebedarfs
6.4 Ergebnis
7 Zusammenfassung und Ausblick
7.1 Zusammenfassung
7.2 Ausblick
8 Literatur
8.1 Abbildungsverzeichnis
8.2 Tabellenverzeichnis
A Anhang
A-1 Typische Betriebszustände
A-2 Vergrößerte Abbildungen
A-3 Abbildungen „in Anlehnung“
|
7 |
Cost Effectiveness and Complexity Assessment in Ship Design within a Concurrent Engineering and "Design for X" FrameworkCaprace, Jean-David 26 February 2010 (has links)
Decisions taken during the initial design stage determine 60% to 95% of the total cost of a product. So there is a significant need to concurrently consider performance, cost, production
and design complexity issues at the early stages of the design process. The main obstacle to this approach is the lack of convenient and reliable cost and performance models that can be
integrated into a complex design process as is used in the shipbuilding industry. Traditional models and analysis methods frequently do not provide the required sensitivity to consider all the important variables impacting performance, cost, production and ships life cycle. Our challenge is that achieving this sensitivity at the early design stage almost requires data
available during the detail design analysis. The traditional design methods do not adequately include, early enough, production and life cycle engineering to have a positive impact on the design. Taking an integrated approach throughout the life cycle of the ship and using concurrent engineering analysis tools can improve these traditional design process weaknesses. Innovation is required in structural design and cost assessment. The use of design for X, and particular design for production and cost schemes, during the design is the solution: to
reduce failure during a ships life caused by design misconception, to reduce the overall design time and to shorten the build cycle of ships, to enlarge the number of design alternatives during the design process.
The author has developed some assessment methods for cost effectiveness and complexity
measurements intended to be used by ship designers for the real time control of cost process. The outcome is that corrective actions can be taken by management in a rather short time to actually improve or overcome predicted unfavourable performance. Fundamentally, these methods will provide design engineers with objective and quantifiable cost and complexity measures making it possible to take rational design decisions throughout
the design stages. The measures proposed in this PhD are based on several techniques like decision analysis, data mining, neural network, fuzzy logic. They are objective facts, which are not dependent on the engineers interpretation of information, but rather on a model
generated to represent the ship design. The objectivity aspect is essential when using the complexity and cost measures in a design automation system.
Finally, with these tools, the designers should obtain well-defined and unambiguous metrics for measurement of the different types of cost effectiveness and complexities in engineered artefacts. Such metrics help the designers and design automation tools to be objective and perform quantitative comparisons of alternative design solutions, cost estimation, as well as design optimization. In this PhD, these metrics have been applied and validated with success in real industrial conditions on the design of passenger ships.
Les décisions prises au cours de la phase initiale de conception déterminent 60% à 95% du coût total dun produit. Il y a donc un besoin important denvisager simultanément des
aspects de performance, de coût, de production, de complexité au stade précoce du processus de conception. Le principal obstacle à cette approche est le manque de commodité et de fiabilité
des modèles de coûts et des modèles danalyse de performance qui peuvent être intégrés dans un processus de conception aussi complexe que celui utilisé dans lindustrie de la construction navale. Les modèles traditionnels et les méthodes danalyse les plus fréquemment utilisés ne
fournissent pas la sensibilité nécessaire pour examiner toutes les variables de conception importantes qui ont une influence sur la performance, le coût, la production et le cycle de vie des navires. Notre défi est quatteindre cette sensibilité au niveau de la conception initiale
demande presque toujours des données uniquement disponibles lors de la conception détaillée. Les méthodes de conception traditionnelles ne prennent pas suffisamment en compte, suffisamment
tôt, la production et lingénierie du cycle de vie afin davoir un impact positif sur la conception. Adopter une approche intégrée sur lensemble du cycle de vie des navires et utiliser lingénierie simultanée peuvent améliorer les faiblesses des processus de conception traditionnels.
Linnovation est nécessaire dans la conception structurelle et lévaluation des coûts. Lutilisation du concept de "design for X", et en particulier le design en pensant à la production et
à la réduction des coûts lors de la conception est la solution : pour réduire les dysfonctionnements qui peuvent apparaître pendant la vie du navire causés par des erreurs de conception, de réduire le temps total de conception et de raccourcir le cycle de la construction de navires, délargir le nombre dalternatives de conception évaluées au cours du processus de conception. Lauteur a développé quelques méthodes dévaluation des coûts et des techniques de mesure de la complexité destinées à être utilisés par les concepteurs de navire pour le contrôle en temps réel de la conception. Le résultat est que les actions correctives peuvent être prises par
la direction dans un temps assez court pour améliorer réellement ou surmonter les prévisions de performance défavorables. Fondamentalement, ces méthodes offrent aux ingénieurs de conception des mesures quantifiables
des coûts et de la complexité qui rend possible la prise de décisions rationnelles tout au long des étapes de conception. Les mesures proposées dans cette thèse sont basées sur plusieurs techniques telles que lanalyse à la décision, lanalyse de données, les réseaux de neurones ou encore la logique floue. Ce sont des faits objectifs, qui ne dépendent pas de
linterprétation de linformation par lingénieur, mais plutôt dun modèle généré pour représenter le design du navire. Laspect de lobjectivité est essentiel pour lutilisation de la
complexité et la mesure des coûts dans un système dautomatisation de la conception. Finalement, avec ces outils, les concepteurs obtiennent des mesures bien définies et non ambigües des paramètres de mesure de coûts, defficacité et de complexité des artefacts dingénierie. De telles mesures aident les concepteurs et les outils dautomatisation de la conception, à être objectifs et à comparer de manière quantitative les différentes alternatives lors de la conception, de lestimation des coûts, ainsi que de loptimisation. Dans cette thèse, ces paramètres ont été appliqués et validés avec succès et dans des conditions industrielles réelles sur la conception de navires à passagers.
Las decisiones tomadas en la etapa inicial de un diseño determinan el 60% al 95% del total del costo de un producto. Por esta razón, es necesario considerar al mismo tiempo rendimiento, costo, producción y la complejidad en el proceso de la fase inicial del diseño. El principal obstáculo de este enfoque es la falta de práctica y fiabilidad de costos y de modelos de análisis de rendimiento, que puedan ser integrados en un proceso complejo de
concepción utilizado en la industria de la construcción naval. Los modelos tradicionales y los métodos de análisis frecuentemente no tienen la sensibilidad necesaria para examinar todas las variables importantes que influyen en el rendimiento, costo, producción y la vida útil del buque. Nuestro reto es el que logrando de que ésta sensibilidad en la fase inicial de diseño casi siempre requiera de datos únicamente disponibles durante un análisis de diseño require detallado.
Los métodos tradicionales de diseño no incluyen temprana y adecuadamente, la producción y la ingeniería del ciclo de vida para tener un impacto positivo en el diseño. Adoptando un enfoque integrado a lo largo del ciclo de vida de la nave usando la ingeniería concurrente y herramientas de análisis se pueden mejorar estas debilidades del proceso tradicional de diseño. Se requiere innovación en el diseño estructural y la evaluación de los costos. La utilización del concepto diseño para X, y en particular el diseño pensando en la producción y en la reducción de costos durante la concepción es la solución: para reducir errores durante la vida
útil de los buques causados en la concepción del mismo, para reducir el tiempo total de diseño y acortando el ciclo constructivo del buque, para ampliar el número de alternativas durante el proceso de diseño. El autor ha desarrollado algunos métodos de evaluación de costos y de técnicas de medida de la complejidad destinadas a ser utilizadas por los diseñadores de barcos para el control en tiempo real del proceso de costos. El resultado es que las acciones correctivas pueden
ser adoptadas por la dirección en un tiempo suficientemente corto para realmente mejorar o superar el rendimiento desfavorable proyectado.
Fundamentalmente, estos métodos ofrecerán a los ingenieros diseñadores con medidas objetivas y cuantificables de costos y complejidad haciendo posible tomar decisiones racionales
a lo largo de todas las etapas de diseño. Las medidas propuestas en esta tesis doctoral se basan en varias técnicas tales como análisis de decisión, análisis de datos, redes neuronales y lógica difusa. Son objetivos hechos, que no dependen de la interpretación que el ingeniero
realice sobre la información, sino más bien en un modelo generado para representar el diseño de los buques. El aspecto de la objetividad es esencial cuando se usa las medidas de
complejidad y costos en un sistema de automatización del diseño. Finalmente con estas herramientas, los diseñadores podrían obtener medidas bien definidas
y no parámetros de medición ambiguos de costos, de eficacidad y de complejidad en los artefactos de ingeniería. Estas medidas ayudan a los diseñadores y a las herramientas automatizadas de diseño, a ser objetivos y a comparar de manera cuantitativa las diferentes
alternativas de solución del diseño, estimación de costos, así como también la optimización del diseño. En este doctorado, estos parámetros han sido aplicados y validados con éxito sobre
el diseño de buques de pasajeros en condiciones industriales reales.
In der Anfangsphase einer Produktentwicklung getroffene Entscheidungen definieren 60% bis 90% der Gesamtkosten eines Produktes. Daher ist es absolut notwendig Performance, Kosten, Produktion, Designkomplexität in der Entstehungsphase eines Produktes zu betrachten. Das Haupthindernis hierbei ist das Fehlen von praktikablen und zuverlässigen Kosten- und
Performancemodellen, welche sich in den komplexen Designprozess wie in der Schiffbauindustrie integrieren lassen. Konventionelle Modelle und Analysemethoden berücksichtigen oft
nicht all die wichtigen Performance-, kosten-, produktion-, und Lebenszyklus-relevanten Variablen. Unsere Herausforderung, dass das Erreichen dieser Sensibilität in der Anfangsphase
der Produktentwicklung, benötigt fast immer Daten, die erst in der Phase der Detailkonstruktion zur Verfügung stehen.
Die konventionelle Entwurfsmethoden berücksichtigen nicht angemessen und früh genug die Produktion und das Lebenszyklen-Engineering, welche eine positive Auswirkung auf das Design haben. Ein integrierter Ansatz entlang des Lebenszyklus eines Schiffes und das Praktizieren von Concurrent Engineering können die Schwäche des konventionellen Entwurfsprozesses
beseitigen. Innovation ist notwendig im Strukturentwurf und in der Kostenanalyse. Die Anwendung von Design for X und besonders Design for Production and Cost Scheme während der Entwurfsphase ist die Lösung: Um die Fehlerquote verursacht durch Missverständnisse und
die Entwurfs- und Produktionszeit zu reduzieren, sowie um eine höhere Anzahl von Entwurfsvarianten zu ermöglichen.
Der Autor hat einige Analysemethoden für Kosteneffektivität und Komplexitätsmaßnahmen für die Anwendung durch Schiffsentwerfer für die Echtzeit-Steuerung von Kostenprozess
entwickelt. Das Ergebnis ist, dass das Management korrigierende Maßnahmen in kurzer Zeit treffen kann, um eine ungünstige Performance zu verbessern bzw. zu vermeiden. Im Grunde beschaffen diese Methoden den Entwurfsingenieuren mit objektiven und quantifizierten
Kosten- und Komplexitätsmaßnahmen. Dies vereinfacht das Treffen von vernünftigen
Entwurfsentscheidungen über die gesamte Entstehungsphase eines Schiffes. Die in dieser Arbeit vorgestellten Maßnahmen basieren auf Techniken wie die Entscheidungsanalyse, das Data-Mining, neurale Netze und die Fuzzy-Logik. Es sind objektive Fakten, welche nicht
von der Interpretation des Ingenieurs abhängen, sondern von einem generierten Model, um den Schiffsentwurf darzustellen. Der objektive Aspekt ist essenziell bei der Anwendung von
Komplexitäts- und Kostenmaßnahmen in einem automatisierten Entwurfssystem.
Mit diesen Werkzeugen sollte der Entwerfer gut-definierte und eindeutige Werte für Maßnahmen von unterschiedlicher Natur von Kosteneffektivität und -komplexität erhalten. Diese Werte helfen dem Entwerfer und automatisierten Entwurfssystemen, objektive zu sein.
Ferner, ermöglichen diese Werte quantitative Vergleiche von Entwurfsvarianten, Kostenabschätzung
und Entwurfsoptimierung. Diese Werte wurden im Rahmen eines Studienfalles
mit realen Voraussetzungen (Entwurf von Passagierschiffen) erfolgreich angewendet und validiert.
|
Page generated in 0.1105 seconds